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I. Introduction and Preliminaries

We introduce and extending several inequalities to the field of non-commutative
symmetric Banch function spaces. We generalize some classical inequalities for independent
random variables, due to H. P. Rothenthal. Rosenthal inequality (Astoshkin & Maligranda,
2004) was initially discovered to construct some new Banach spaces. However, Rosenthal
inequality gives a good bound for the p — norm of independent random variables and has
found many generalizations and applications.

The classical Rosenthal inequality (Montgmery-Smith, n.d.; Theorem3) assert that for
p = 2 and (x;) a sequence of independent, mean zero random variable in LP(Q), where
(Q, x, P) is a probability space, we has

12 xillircay = max GO iy, ||<x)?=1||Lzl(Lz(m)}, )

1.1. Definition. Banach function space E on (0,a) is called symmetric if for f €
S(0,a) and g € E with u(f) < u(g)wehave f € E and ||fllz < llglls-

Let (W, 7) be a semifinite von Neuman algebra then we can state the following
definitions.

1.2. Definition. For T — measurabe operator x (affiliated with V') and t > 0, the
singular value of x is defined by:

e (x):=inf {S > O:T(X[S,oo)(lxl)) < t}.

An equivalent formulation ;. (x) = inf{|lx(1 — p)|l: t(p) < t}.

1.3. Definition. Given a symmetric function space E on (0,),set E(N, 1) :=
{x; u(x) € E}. Then E(IV, 1) is called the noncommutative symmetric space associated to
N and E.

Now we describe a special case of the main result (Theorem 4.4 in the following section
4). Let E be a separable symmetric Banach function space on (0, c0) and M be a semi finite
von Neumann algebra. We denote by E (M) the non commutative symmetric space associated
with E and M. Let (V) be a sequence of von Neumann subalgebra of the M, V" a common
von Neumann sub algebra of the (V) and suppose that (3V;,) is independent with respect to
&y, the conditional expectation with respect to V. Let (x;) be a sequence such that x;, €
E(V,) and E5(x,) = 0 for all k. Let diag(x;) denote the n x n diagonal matrix with
X1, ---, Xy ON its diagonal. Then for any n

1
157 elleey = max {ldiag (eoas laoe, 00y || (Ch en il

E(M)}’ @)
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provided E satisfies one of the following conditions:

(1) either E has Boyd indices satisfying 2 < pp < q5 < o,

(if) E is a symmetric Banach function space which is an interpolation space for couple
(L?,LP) and g — concave, for some 2 < p < w and g < oo.

Corresponding to the two conditions defined above, we need two different types of
Khintchine inequalities in the proof of (2). Under condition (i), a key tool needed in proving
the above generalization of Rosenthal's Theorem is the following Khintchine type inequality,
considered in (Lemardy & Sukochev, 2008). Let M be a semi-finite von Neumann algebra.
Suppose E is a symmetric Banach function space on (0, ) with 1 < pg < g < o which is
either separable or the dual of separable space. The main result in (Lemardy & Sukochev,
2008). Theorem1.1 states that for any finite sequence (x;) in E(M) and any Rademacher
sequence (1) p=, We have

12k T ®xk | e 10 (@A) SE Max {||(Xk)||5(]vr;zg)' ||xk||E(]vr;1%)}- (3)
This inequality is derived by duality form the following inequality, which holds for a
larger class of spaces: if g < oo, then

inf{”}’k”E(M;lg) + ||(Zk)”E(M;l$)} 5 E||rk®xk||E(L°°(Q)®Jvr) )
where the infimum is taken over all decompositions x, = y, + z,. In the work by
Astashkin (2010), it was left as an open question whether (3) holds if gz < oo, with no further
assumption on the lower Boyed index of E. We answer this question in the positive by giving
a direct proof in the following 4.1 Theorem of section 4 . In fact, we obtain (3) also for quasi-
Banach function spaces and this proves to be essential for the proof of (2).
For any finite sequence (x;) in E (M) and Rademacher sequence (1) -, We have

ENk rexilleoe) S max{]l () £ aey;iz I Cxr) ”E(M);zf}- (4)

I1. Symmetric Banach Function Spaces

Let 0 < a < co. For a measurable , finite function f on (0, @) we define its distribution
function by d(v; f) = At € (0,):|f(t)| >v) forv >0, whereA denotes Lebesgue
measure. For f,g € (0,a) we say f is submajorized by g and we write f <<
g,if fot us(fds < fot us(g)ds for all t > 0. A quasi-Banach function space E on (0, ) is
called symmetric if for all € S(0,a) and g € E with u(f) < u(g) we have ||fllg < llglls -
It is called strongly symmetric if , in addition, for f,g € E with f << g we have ||f||z <
llgllg. If , moreover, for f € S(0,a) and g € E with f << g it is follows that f € E and
Ifllz < llgllg , then E is called fully symmetric. Fully symmetric Banach function spaces on
(0, @) are exact interpolation spaces for the couple (Ll(O, a),L*(0, a)). The class of (fully)
symmetric spaces covers many interesting spaces from harmonic a analysis and interpolation
theory, which as Lorentz, Marcinkiewicz and Orlicz spaces.

A symmetric (quasi-Banach function space is said to have a Fatou quasi-norm if for every
net (f3) in E and f € E satisfying 0 < f T f we have ||f,3||E T If |l . The space E is said to
have the Fatou property if for every (fﬁ) inE and f € 5(0,a) satisfying 0 < f; T f and
supﬁ”fﬁ”E < oo we have f € E and ||f[;||E T g

Let M be a von Neumann algebra equipped with a normal faithful trace state 7: M —
C,that ist(1) = 1 and t(xy) = ©(yx) . Then L,(M, 1) is completion of M with respect to

llxll, = [rlxlp]l/P. It is well known (Johnson & Schechtman, 1988; Takesaki, 1972) that [|. ||,,
isanorm for 1 < p < oo. In particular ||. [l = ||| . ||- || denote operator norm . Let N ¢ M
be a von Neumann subalgebra . Then there exist a unique conditional expectation Ey: M = N
such that €,-(1) = 1 and Ey-(axb) = aEy(x)b,a,b € N and € M . We say that two
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subalgebras ' ¢ A, B ¢ M are independent over V' if E;:(ab) = Ex(a)En(b),a € A,b E
B.

Forany x € L' + L® (M), E(x) is the unique element in L* + L® (V") satisfying
(xy) = 1(E(x)y), forall € L' n L* (). (5)

The € is called conditional expectation with respect to the von Neumann sub algebra V.

2.1. Proposition (Johnson & Schechtman, 1988). Let M be a von Neumann algebra
equipped with a normal, semi-finite, faithful trace = and let V' be a von Neumann subalgebra
such that restriction of 7 to V" a gain semi-finite. Then there is a unique linear map &: L' +
L*(M) - L' + L* (V) satisfying the following properties :

(@) E(x™) = €(x)";

b)EMX)=0ifx=0;

©ifx=0and E(x) =0thenx =0;

(d) E(x) = x forany x € L + L®(V) ;

©)EMx) xE(x) <E(x*x) forx €M ;

(f) Eisnormal ,i.e. x, T x implies E(x,) T E(x) for (x,),x €M ;

ONEC)N; < llxllq, for all x € LX(M), |IEC) |l < llx]lee , for all x € N and so
E(x) << xforall € L' + L* (M) ;

(hE(xy) =xE() if x € LX(W), y € L®°(M) and E(xy) = E(x)y whenever €
LY(M),y e L®(N).

2.2. Definition. Let 0 < a < o and let E be a symmetric quasi-Banach function space
on (0, a). For any 0 < a < o we define the dilation operator D,, on S(0, «) by (D,.f)(s) =
f(ms)xomns) .

If E is a symmetric quasi-Banach function space on (0, a), then D,, is a bounded linear
operator.

Define the lower Boyd index pg of E by

-1
PE = sup{p >0:3¢>0,v0<n<1|D,fllg < cn7||f||E},
and the upper Boyd index by
1

G5 = inf{q > 0:3¢ > 0vn = 1 [IDuflls < cn @ IIf s }
This above two definitions of lower and upper Boyd index can be denoted by

BT logs _ Sup logs
Pe = B ogor, ] = oaos, |
qe = lim — = oigf<1 O

520 tog[loy || tog|[Da || °
Note that 0 < pg < gy < oo. If E is a symmetric Banach function space then 1 < py <
qg < . Let 0 < pg, qg < co. A symmetric quasi-Banach function space E is said to be p —
convex if there exists a constant ¢ > 0 such that for any finite sequence (x;)i-, ,

|| < ey, afo<p<e,

11555 Xl < ¢S lIxille (if p=0).
A symmetric quasi-Banach function space E is said to be g-concave if there exists a

1
constant ¢ > 0 such that for any finite sequence (x;)-; in E we have (zggluxiug)q <

1
Qi lx|Da)| L (f 0 < g < o),
rlr::lax

1zien Ixillg < clliZ%, |xilllg (if g = ).
We can conclude that every quasi-Banach function is co — concave and any Banach
function space is 1 — convex. We note that if E is p — convex then py = p and if E is q —

c
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concave then q; < q . For 1 < r < oo, let the r-concavification and r-convexification of E be
defined by E) = {g € S(0,@):1gl = f7; f € E}, lgllg,, = lIf I3
1

1 =
EM = {g €S(0,a):|lgl=fr;f € E}, lgllze» = lIf I}, , respectively (Lindenstrauss &
Tzafriri, 1979) (p.53), if E is a (symmetric) Banach function space, then E is a (symmetric)
Banach function space. From the above definitions it follows that PEqy = %pE,qE(T) =

%QE yPp) = TPE,qg@) = TqEg-

2.3. Lemma (Johnson & Schechtman, 1988). Let E be a symmetric quasi-Banach
function space. Then for every a constant p > 0 there exists a constantc > 0and 0 <r <p
such that for all x; € E

|ty < ez ©)
For f € (0, a) we set
KC 512,19 = inf (ol + Walliowa)f = fo + fi (> 0).

2.4. Theorem. Let 1<p<q<oand §+%= 1,$+% = 1. Suppose E is a
separable Banach-function space on (0, @) and suppose E* is an interpolation space for the
couple (L”'(O, a),L9 (0, a)). Then E is an interpolation space for the couple
(27(0,@),L(0, @)).

2.5. Theorem. Let (S,Z,u) be a measure space and let 1 < p,q < . Then every
interpolation space E for the couple (LP(S),L‘I(S)) is given by a k-method i.e., there is a
Banach function space f on (0, o) such that f € E ifand only if t - K(¢, f;LP,L9) € f and
there exist constants ¢, C > 0 such that

clit > K, f5 L, LDy < lIfllg < CIT » K(&, f5 LP, L) |-

2.6. Proposition. Let 1 < p < g < oo. Suppose E is a symmetric quasi- Banach function
space on (0, a) which is an interpolation space for couple (Lp (0,a),L9(0, a)). Then for any
0<s—1<o,Eq_4 respectively EC~D is an interpolation space for the couple

p q
(Ls—_l(o, a), Ls—_l) respectively (Lp(s‘l) (0, &), L1, a)).

Proof. By Theorem 2.5. there exists a Banach function space F such that

Iflle = It — K&, f; LP, LD ||f.
For any p>0anda,b=0,a,(a’? +bP) < (a+b)? < p,(a? +bP), for some

constants a,, 8, depending only on p. Using this fact, it is not difficult to show that there are
constants depending only on s such that

K (t, NS 12, 19) = K (£, f; L5, Ls—%) .

14 q p q
Let T be a linear operator on Ls-1 4+ Ls-1 which is bounded on Ls-1 and Ls-1. Then

1
ITf s, = <

tH

e K (e57, 7 1505, 150)

1

K (57 f; 155, Ls%)s‘_1

= IIflls,, -
F

We can similarly prove the assertion for EG—1

2.7. Lemma. Let E be a symmetric quasi-Banach space on (0, a) with pz; > 0. Then E
is an interpolation space for the couple (LP(0, &), L4(0,a)) .

Proof. Suppose first p; > 1. We claim that E is fully symmetric up to a constants i.e.,
there is a constant c; > 0 depending only on E, such that if f € S(0,a),g € E and f << g,
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then f € Eand ||f|lg < cgllgllg. Let g™ (t) = %fotus(g)ds be the Hardy —little wood maximal

function of g. By (Johnson & Schechtman, 1988), Theorem (2i), the map g — g** is abounded
quasi-linear map on E and ||g**|lz < czllgllz. By assumption f** < g** , so f** € E and
If**llz < llg™|lg, as E is symmetric . Finally,, u(f) < f**,so f € Eand [|fllz = lu(Hlle <
I|f**||g . This completes the proof of the claim.

2.8. Theorem (Kalton & Montgonetry-Smith, 2003). Let E be a symmetric quasi-Banach
function space on (0,a) which either has order continuous quasi-norm or has the Fatou
property. Let 0 <p<q<oo. Then E is an interpolation space for the couple
(Lp (0,), L9(0, a)) whenever one of the following conditions holds:

(p<pe<qs<q;

(i) E is p-convex with convexity equal to 1, for some gz > p;

(iii) E is r — conex with convexity constant equal to 1, for some 0 < r < oo, E is q —
concave With concavity constant equal to 1 and p; > p ;

(iv) E is p — convex with convexity constant equal to 1 and g — concave .

Proof. The first assertion is the well known Boyd interpolation theorem which was
generalized to symmetric quasi-Banach function spaces in (Johnson & Schechtman, 1988),
theorem3. To prove the second assertion suppose first that p = 1. Then E,) is a symmetric

Banach function space and satisfies AEq,) < %. Moreover, E(, has the Fatou property or is
separable if E is. By (Astoshkin & Maligranda, 2004), the theorem1, E(,) is an interpolation

a
space for the couple (Ll, LP). By proposition 2.6 we now find that E is an interpolation space

1

for the couple (LP,L%). Finally , if 0 < p <1 then we find by the above that E(E) is an
q
interpolation space for the couple (Ll,Lv). Hence , by proposition 2.6, E is an interpolation

space for the couple (L?, L?). The third assertion for g = oo is proved in Lemma 2.7. For the
remaining cases we may assume , by proposition 2.6 , that » = 1. Under this assumption, E is
a symmetric Banach function space and hence we can deduce the result by duality. Observe

that E is separable , as g < oo. Moreover, E* is q' — convex and qgx < p’,where §+ % =
1, $+ % = 1 . By the second assertion we obtain that E* is an interpolation space for the

couple (L9, LP"). The result now follows from Theorem 2.4. For the final assertion, suppose
first that p = 1,q = c. Then E is a symmetric Babach function space which is separable or
has the Fatou property. Hence E is fully symmetric under these assumptions and the result now
well-known Calderon-Mitjagin theorem, (Krein, Petunin, & Semenov, 1982), theorem 4.3. The
case where p > 1, q = oo follows from this by proposition 2.6. If p =1, g < o ,then E isa
separable symmetric Banach function space and in this case the result can be deduced from the
case p > 1,q = o by duality using theorem 2.4 in the interpolation space for the couple

q
(Ll, LP) . Therefore, by proposition 2.6, E is an interpolation space for the couple (LP, L?).

2.9. Theorem. For 1 <p < q < oo. Suppose E is a fully symmetric quasi-Banach
function space on (0, ) which is an interpolation space for the couple (Lp (0,a),L9(0, a)).
Let M be a semi-finite von Neumann algebra equipped with a normal, semi-finite, faithful trace
7 satisfying (1) = a. Then E(M) is an interpolation space for the couple (LP (M), L4 (M)).

Let () be Rademacher sequence of independent {—1,1} — valued random variables on
a probability space (Q,F,P) such P(r, =1) = P(r, = —1) = % for all k. Then for 1 <p <
oo, then nth Rademacher projection
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Rn(2) = 27 i®E o ((1;®1)x) (7)

is bounded on LP(L* (Q2)®M) and , moreover , for all n > 1 we have ||R,|| < cp, for

some constant c,, depending only on p. if E' is a symmetric quasi-Banach function space on

(0, ) with 1 < pg < qg < o, we find by interpolation that R,, defines a bounded projection

in E(L®(Q)®M) and ||R,|| < cg for some n > 1, where ¢ is a constant depending only on E.
We let Rad,, (E) denote the image of R,,.

I11. Non-Commutative Khintchine Inequalities

We prove two types of non commutative Khintchine inequalities for non commutative
symmetric spaces the main results in this section are Theorem 3.1 and 3.11 below. Recall the
notation

G lerenz) = || Boxix

for a finite sequence (x;) in E(M).

A normal faithful, semi-finite trace 7 satisfying (1) = a. Suppose E is a symmetric
quasi-Banach function space on (0, @) which is p-convex for some 0 < p < oo and satisfies
qrg < . Then

iy 10Dy = [| ooz

E(M EM)

1% 7:®xill o) S max {1 lpgaezy 1) e2) ) ®)
for any Rademacher sequence (r;) and any finite sequence (x;) in E(M).
3.1. Theorem (Lust-Piguard & Pisier, 1991). Let 1 < g < o and let M be a von
Neumann algebra equipped with a normal, faithful, semi-finite trace . If 2 < q < oo then

EINZrixilliaan) =q max {1l 1D agez)}

For any finite sequence (x;) in L2(M). On the other hand, if 1 < q < 2 then

EllrixillLagn) =q i"f{”(}’i)”Lq(M;lg) + ||(Zi)||Lq(M;l;)}-

where the infimum is taken over all decompositions x; = y; + z; in LY(M).

3.2. Lemma. Suppose that 0 < a < co. Let E be a symmetric quasi-Banach function
1

space on (0, @). For any gq(0, «) define @,: (0,1) - (0,00) by @,(t) =t 4.If gz < g, then
there is a constant ¢, r > 0 such that for any f € E we have
”f®q>q“5(o,a)x(o,1) < Gl ®)

Conversely if (9) holds for every f € E then qz < q.
Proof. Let gz < q and f € E.. We can note first that

_1
1@l 001001 = ”f(s)t !
n+1

||f(5) Y=o ZT)((Z‘"—l,Z‘"]

<

E(0,a)x(0,1)

<

E(0,a)x(0,1)
1
r(n+1) T

c(Zo2 © IfFxa el meon)
Wherec > 0and 0 <r < 1asin (6).
Fix g > qo > qg. Observe thatf(S))((Z—n—1‘2—n](t) has the same distribution on (0, &) x

(0,1) as Dyn+1f on (0, ). Hence, as E is symmetric, we finally obtain
1

n+'1

I ®al 001001 < € (Z%):l 2D (t)”g("'“))
1

r(n+1) -r(n+1)

< cCqy(Za2 ¢ 2 @ ) Ifleom Sqr Iflleo 2 9> do
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To prove the second assertion notice first that since u(Dg, f) < D,u(f) for all s €
(0,00) and f € E, it suffices to show that for all s > 1and f € E, we have ||[Dsfllg <
1

cs 4||f|lg. Fix a € (0,1) and observe that
1
1@l o o = ||

1
D:f

a a
a

E(0,a)x(0,1)

> [fa xe 0

E(0,a)x(0,1)

E(0,@) '
where in the final step we use that f(s) )((5 a] (t) has the same distribution on (0, ).

Hence

1
1 ~Lyq
|D3f < ail|f@d, |, < cor (2) © Iflls .

In other wise , for any s = 2 we obtain

IDsfllg < chqu Q||f||E Clearly this implies that gz < q .
3.3. Lemma. Let 0 <a < o0.For 0 < g <o let ®, in (0,a) - (0,1) be given by

1
®,(t) =t 9. Let f: (0, ) — [0, 0] be measurable and a. e. finite. Then for every > 0.

d(v; f®®,) = [, (%2 as + d(v; .

Proof. By a change of variable.
1

1((s,6) € (0,0) > (0,1): f()y () > v) = f /1(5 € (0, a): f(s)t T > v) dt
0
= fl/l(s € (0,a): f(s) > vu)quitdu

= [ f(s) IR
- 4o Ormin (1) > o au= frin (L),

f{f<y} (f(S)) ds + A(s € (0,a): f(s) > v).
3.4.Lemma.(Chebyshev's inequality) Let 0 < g < oo and x € L9(M). Then for any > 0,

q
d(v;x) < Plian,
v4
3.5. Lemma. Let M be a semi finite von Neumann algebra with a normal , semi-finite ,
faithful trace 7 satisfying (1) = a. Suppose E is a symmetric quasi-Banach function space on
(0, @) which is p-convex for some 0 < p < oo and suppose that for any finite sequence (x;)
of self-adjoint elements in E (M) we have

1% ®xicllsagon S || Gz

Then, for any finite sequence (x;) in E(M),

1% e ®xill g Sz max {1 lseaz) 1 sz |-

On the other hand, if we have

E|lX« rkxk”E(JV[) Sk 12k xl%”E(]V[)

for any finite sequence (x,) of self-adjoint elements in E(M), then for any finite
sequence (x;) in E(M) ,

ENZicriexellzon S5 max {1 sy, 1lloez)

Proof. Let (x; )%=, be any finite sequence in E (M), put

Xk = Yi +1Zx , Vi = Vi, Zx = Zx, and notice that

0<yizi<yf+z}= %(x;'{‘xk + x.x7), 1 < k < n. Hence,
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1
1 1 = 1

CeyD)s Cezd)? < (Zig (el + 162 ) = = Ealll? + [xi)Z. The assertion
now readily follow from a straightforward computation.

3.6. Theorem. Let. 0 < a < oo and let M be a von Neumann algebra equipped with a
normal, faithful, semi-finite trace t satisfying 7(1) = a. Suppose E is a symmetric quasi-
Banach function space on (0, @) whch is p-convex for some 0 < p < o and satisfies qg <
co. Then

I @x;llsogaey S& max {l ) llsezy 1) soen) } (10)
For any Rademacher sequence (r;) and any finite sequence (x;) in E(M).

Proof. By Lemma 3.5, it suffices to consider the case where x4, ..., x,are self-adjoint.
We begin by showing that for any g € [1,0)and v > 0

d(v; Y;ni®x;) < qu(v;f®cbq),
where  f:(0,a) = [0,00] and @,:(0,1) > (0,0) are defined by f(s)=

1 _1
Us ((Zixiz)i) and d,(t) =t 9 and C, is constant depending only on q. Fix v > 0. Define

1 1
¢, = 1®e,, where e, =eEix))*[0,v], then év% = 1®e% = 1QeZi*))* (v, ). Since
d(v;a+b) <d (g q) +d G é %Ziri®xié§). Recall that if y € S(7) and e is a finite trace
projection in , then u;(ye) = u;(ey) =0 for t > t(e) . Hence
P! A Al 1 P

d(v;eiyin®xe,) <E®r(62) =1(el) =d(v;Cilxl?)z) =d(w;f),  and

analogously,
1

d(v;é, Nim®xe),d (v e nim@xe2) < d (v; (Rilxl?z) = d(w; f).
We estimate the remaining term using the noncommutative Khintchine inequality in L?(M)
(Theorem3.1) see for example (Lindenstrauss & Tzafriri, 1979), (Theorem 1.e.13) and Lemma
3.4. The proof is complete.

We can obtain the following result of Theorem 3.6 for spaces with gz < 2.

3.7. Theorem. Let M be a von Neumann algebra equipped with a normal faithful trace
T satisfying 7(1) = a. E is a symmetric quasi-Banach function space on (0, a) which is p-
convex for some 0 < p < oo and suppose g < 2. Then for any finite sequence (x;) in E(M)
we have

1% ®x;llsaogaey <cp inf {10 sz + 1@ erea) ) (12)
Where the infimum is taken over the decompositions x; = y; + z; in E(M). If E is a

symmetric Banach function space on (0, o) which is separable or the dual of a separable space
and satisfies gz < 2 then

1% ®x:llzoga0) =5 inf {1 sez) + 1@ s}
Proof. FiX y;,z; in E(M) such that x; = y; + z; for 1 <i<n.Fixv>0and g <
1 1
q < 2. Define y = (|y;12)z,z = (Tlz{]?)? and set é; = 1Q®e; ,éZ = 1QeZ. Set f,(s) =
us(y), f,(s) = us(2) and f(s) = us(y + z). We first note that
d(v; 2im®x) < d (=; ) ef Timi®xi6) 67 ) + d (= 6) 67 Lymi®x;e) (6)*)
1 L
+d (g, égég Zi ri®xi(é3/) ) +d (E, ég(éﬁ)l Zi ri®xi) +d (g, (ég) Zi ri®xi) .
Reasoning as in the proof of Theorem 3.6 we obtain by Chebyshev's inequality , Kahane's
inequality and the non-commutative Khintchine inequality for L1(M),

d(v; &) eZ2(X;1:®x)é;) é%) Sq d(v; fy®<bq) + d(v;fz®d>q) < d(v;f@dbq).
Moreover,
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d (_ éy el ¥ n®x;e) (eN)* ) < E®T((¢NY) = d(v;2) < d(v; ,8%,) ,

16
and similarly we find that

d(2;6)65 Rim®@x,6) (6)d (356 (6D Tim®x;),d (%5 () Zimi®x;))
are bounded by d(v, f®CI>q). We conclude that there is a constant C, depending only on
q such that for all > 0,
d(v; 21 ®x;) < Ced(v; D) .
Since the dilation D1 is bounded on E, we obtain by Lemma 3.3

”Ziri®xi”E(L°° M) Sq.E ”f®q)‘1”5(o,a)x(0,1) SqE ||f||E(0,a)

1 1

ALY *12Y5
98 (WD I (DAEHH T
By taking the infimum over all possible decompositions x; = y; + z; in E(M) we obtain
(12). The final statement follows from (Lemardy & Sukochev, 2008), Theorem 1.1.(1), which
states that the reverse of the inequality in (11) holds if E is separable or dual of a separable

space and qp < co.

3.8. Corollary. Let M be semi-finite von Neumann algebra . Suppose E is a separable

symmetric Banach function space on (0,o) with py > 1. Then for any finite sequence
(x;) in E(M),

inf {100 lseaz) + 1) sz} S5 1Zimi®@xillzaogany (12)
where the infimum is taken over all decompositions x; = y; + z; in E(M). If pg > 2

then

max {16 sz ) 10D Ny} S5 12 @2 llsg=gar) -

In the proof of theorem 3.6 and 3.7 we can use the non-commutative Khintchine
inequalities in (Junge & Xu, 2008), remark 3-5 to obtain the following version where the
Rademacher sequence is replaced by a sequence of independent non-commutative variables.

3.9. Corollary. Let M, N be a von Neumann algebras equipped with normal, faithful
finite trace and o , respectively, satisfying (1) = a and a(1) = B. Suppose E is a p-convex
0 < p < oo symmetric quasi-Banach function space on (0,aB) with qy < . Let q >
max{2,qg} and (a;);>, be a sequence in LY(N) which is independent with respect to o,
satisfying o(a;) = 0 and is such that d, = sup;»1|la;|l; < . Then

1% @2l g (wgar) S max {1 Nsaez ) 1D saea) )
for any finite sequence (x;) in E(M). If gz < 2 then

I 5 @i ®xille waney Se.a, f {1OONeoeaz) + 1@ o))

Where the infimum is taken over all decompositions x; = y; + z; in E(M) .

3.10. Theorem. Suppose E is a symmetric quasi-Banach function on (0, «) which is p-
convex for some 0 < p < co. Then the following are equivalent.

(i) The inequality (10) holds for any semi-finite von Neumann algebra M ;

(i) qp < oo.

Proof. Moreover, if this is the case and if E is either a separable symmetric Banach
function space or the dual of separable symmetric space, then

||(xk)||E(M;z§)+E(M;z$) Se Ik e ®@xkllpeqan) SE(M2)NE(MER)-

It remains to prove (i) = (ii) . Suppose q; = oo. It follows by (Lindenstrauss & Tzafriri,
1979), proposition 2.b.7, that for every & > 0 there exists a sequence (x;)i=, of mutually
disjoint independent distributed in E such that ||x;|| = 1 for all i and 1 < [IX; xillg0.0) <
1 + €. One can show that (10) cannot hold for M = L*(0,1), by proceeding as in the proof of
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(Junge, 2002), corollary 1. The final assertion follows by (Lemardy & Sukochev, 2008),
theorem 1.1.(2).

3.11. Theorem. Let M be a von Neumann algebra equipped with a normal, semi-finite
faithful trace t satisfying (1) = 1. Suppose E is a symmetric quasi-Banach function space on
(0, ) which is p-convex for some 0 < p < o and r — concave for some < oo . Then

EllX: rixillee) Sg max {”(Xi)”E(M;l%), ”(xi)”E(M;l%)}a (13)

for any Rademacher sequence (r;) and any finite sequence (x;) in E(M) .
Proof . By Lemma 3.5, it suffices to consider the case where x4, ..., x,, are self-adjoin.

Fix ¢ = 1 such that g > r and define f: (0,a) — [0, 0] by f(s) = g ((Zixiz)%) and &, =
1
ta. Since E is ¢ — concave forany g > r

BIS:rixileon < (1) ) )7 < Cq(8) | (B

E!
Where C, (E) is q — concavity constant of E. Fix v > 0 and set e, = eZilxil?)? [0, y].
Recall that p1,(a + b) < pe(a) + pe(b) and d(v;a+ b) < d (3;a) +d (%;b) forall a,b €
2 2
S(t). Hence, by the triangle inequality in L7 (), we have forany v > 0

(v (E(W(zi?xi)wﬁ)) 9
<a(3(s "?q>+d(g;(m ))
va5(s ) )eals (e )

Recall that if e is a finite trace projection we have u;(ye) = u;(ey) = 0 forall t > t(e).

Therefore,
1
ad\g 1
d (g; (B )) < 4d (v; (lxl*)?) = 4d(ws f),
and analogously,
1

d (2; (e q)%>,d ( (5B |Dsnced irmied) q)z> < 4d(v; f)

We estimate the final term in (12) using the non-commutative Khintchine inequality in
L1(M) (Theorem 3.1) and Chebyshev's inequality (Lemma 3.5) . We obtain

vid <v; <[E <D%u Zirievxiev>q>%> = vl <(t € (0,00): E (,uizirievxiev)q> > vq>

w q
<J, E (#1(Zirievxi€v)q> dt =E |
2 L9(0,00)
= 49E(1 T riepxiey ||l < 49K (ENZ: rievxie, llaqn )’
iTiéyXi€y = q,1 iTiépXieyllram)

LI(M)
114
Cdesre 2|, < 49KLBY [y, f()ds,

where the last inequality follows by (10) and B, and K, ; are the constants in the

commutative Khintchine inequality and Kahane's inequality (Lindenstrauss & Tzafriri, 1979;
theorem 1.e.13). By Lemma 3.4 we have v~4 f{fsv}f(s)qu +d(v; f) = d(v; fQP,,) forall

v > 0 and hence there is a constant C, > 0 such that for any > 0,

Diu(e® Y;rix;e,) Diu(ey X mixiey)
4 4

Diu(e, ¥ rix;iey) Diu(ey Xirixiey)
4 4

Diu(ey Ximixiey)
4

Diu(e, i rix;ey)
4

Diu(};rie,x;e,)
4

< 49KJ B |
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1
d (v; (Bl (B 7) < Cod (2 £
Since the dilation operator D¢ is bounded on E we obtain

H(Emt(zinxmq)ﬁ Sqe 7@,

Since the r-concavity of E implies that gz < r < q < oo, an application of Lemma 3.3
completes the proof.

3.12. Corollary. Let M be a semi-finite von Neumann algebra. Suppose E is a separable
symmetric Banach function space on (0, o) which is p-convex for some p > 1. Then, for any
finite sequence (x;) in (M) ,

inf{”(}’i)”E(Mﬂg) + ||(Zl)||E(Ml12,.)} SE IE”Zirixi"E(M)’ (15)

where the infimum is taken over all decompositions x; = y; + z; in E(M).

Now we obtain the following characterization of g-concave spaces.

3.13. Theorem. Let E be a separable quasi-Banach function space on (0, o) which is p-
convex for some 0 < p < co. Then the following are equivalent.

(i) The inequality (13) holds for any semi-finite von Neumann algebra M;

(i) E is g-concave for some q < oo.

Moreover, if his is the case and p > 1 we have

||(xi)||E(M;lg)+E(M;1$) Sk [E”Tixi”E(M) SE ”(xi)”E(]v[;lg)nE(M,-l;) )

For any finite sequence (x;) in E(M).

3.14. Corollary. Let E be a symmetric Banach function space on (o, @) and suppose E
is 2-convex and g-concave for some g < o. Then , for any semi-finite von Neumann algebra
equipped with a normal, semi-finite, faithful trace = satisfying t(1) = a, any Rademacher
sequence (r;) and any finite sequence (x;) in E(M) we have

ElISirixillzon =5 1CDNsoezynpoeis) =5 1Ziri®xills=gan- (16)

Proof. Since E is g-concave , it has order continuous norm and gz < q < . Hence, by
theorem 3.6 and 3.11, it remains to show that

I e(aei2)ne(rez) Se BIZirixilleon; (17)
||(xi)||E(M;lg)nE(M;lg) e 1Zimi®xillpaesm)- (18)

To prove (17) recall that since E has Fatou norm and is 2-convex, E (M) is 2-convex as

well. Hence

= || IS rlyE

| il s = |idrx?):
1

Se (ENZimixillion )? S EIZirxillegn »
where in final inequality we apply Kahane,s inequality. By applying this to (x;) we see
that (17) holds.
Note that since LP (Q; LP (M) = LP (L™ (Q)®M) holds isometrically for 2 < p < o,
the above shows that, for any finite sequence (x;)i=, in LP (M),
NG llp(aesizy < 112 1@l e ogney- (19)
Since E is 2-convex and g-concave, E is an interpolation space for the couple (L2, LP) by
Theorem 2.5. Hence, by the discussion following (7), Rad,, (E) is a complemented subspace
of E(L*®M) and by theorem 2.6, we obtain
I lpae,2) Se 12X 1i®xill po@an)
By interpolation from (19). By applying this to (x;)i, we see that (18) holds.
3.15. Proposition. Let E be a fully symmetric quasi-Banach function space on (0, a)
with Fatou quasi-norm and 1 < py < qg < oo. For every k > 1 ,let g, € M},_; and suppose

E(M) E(M)
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that |||l < 1 and & commutes with M. Then , for any martingale difference sequence
(Vi) p=q With respect to (M,)y=, in E(M) and any n = 1 we have

IXk=1$rVrllecny Se k=1 Yklle@o) -

In particular, taking &, € {—1,1} vyields the well known fact that non-commutative
martingale difference sequences are unconditional in (M) .

3.16. Lemma. Let E be a symmetric p-convex (0 < p < o) quasi-Banach function
space on (0, a) with 1 < pg < qg < o and suppose M is a von Neumann algebra equipped
with a normal, semi-finite, faithful trace t satisfying (1) = a. Let (M}) 4, be an increasing
sequence of von Neumann sub algebra such that 7|, is semi finite . Then we have the
equivalences

EllX k=1 rkxk”E(M) ~p | Xk=1 xk"E(M) ~p || Xk=1 rk®xk“E(L°°®M)’ (20)

For any Rademacher sequence (r;,) and any martingale difference sequence (x;)j=1

Proof. The first equivalence in (20) follows directly from the un conditionality of non-
commutative martingale difference sequences in E(M). For the second equivalence, observe
that (y,) = (. ®x;) is a martingale difference sequence with respect to the filtration
(L®®M;,). By applying proposition 3.15 with &, = 1;,®1

IXk=1%kllee) = 12R=1®D) (e ®xi) | prognr) Se 1 Xk=1 Tk ®Xk |l o@a0)

The reverse inequality follows similarly from proposition 3.15 with (y;) = (1Qx;,).

3.17. Proposition. Let E be a symmetric Banach function space on (0, o) with 1 < py <
qr < oo and suppose that E is either separable or is the dual of a separable symmetric space.
Suppose M is a von Neumann algebra equipped with a normal semi finite , faithful trace , let
(M) =1, be an increasing sequence of von Neumann sub algebras such that |, is semi-finite
. Then for any finite martingale difference sequence (x;) in E(M) we have

Nl gzrnE Se 12k Xklleny Se Gl ggaps-
Suppose that E is separable . If p; > 1 and either gz < 2 or E is 2-concave, then
125 xellscan =5 1G5 g5 -
On the other hand, if either E is 2-convex and qz < o or 2 < pg < qg < oo then
Xk Xille@ny = Gl yzspeE-

3.18. Proposition. Let M be a semi-finite von Neumann algebra equipped with a normal
semi-finite, faithful trace T and M a von Neumann sub algebra of M such that 7| is again
semi-finite . Let & be the conditional expectation with respect to M. Suppose E is a 2-convex
symmetric Banach function space on (0, o) with 2-convexity constant equal to 1 and suppose
Ey) is fully symmetric. Then || ||g(ar;z) define a norm on E(M).

Proof. It clear that || ||g(ar;z) is positive definite and homogeneous. It remains to show
the triangle inequality. Let x,y € E(M) and fix a > 0. Using that |ax —a~1y|? >0 it
follows that

lx + ]2 < (1 +a?)|x]|? + |(1+ a~1)]||y|% Hence, as E is 2-convex with 2-convexity
constant equal to 1,

lelx +y12lpg00 < (1 +a®llelxlllz,00 + A+ aDllely 2z o0 -
Taking the infimum over all @ > 0 gives

1

1 2
2 2112 2112 ; ;
lle]lx + yl ”E(z) < <||8|X| ”E(z) + |lely] IIE(2)> , Which yields the result.

IV. Improved Non-Commutative Rosenthal s Inequality
We derive a generalization of Rosenthal's theorem to non-commutative symmetric
spaces. Recall the following notion of conditional independence, which was introduced in
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(Junge & Xu, 2008). Given a sequence (N, ) of conditional independence, which von Neumann
algebra M, we let W*((N,),) denote the von Neumann subalgebra generated by (Ny,) .

4.1. Definition. Let M be a von Neumann algebra equipped with a normal, semi-finite,
faithful trace . Let (N,) be a sequence of von Neumann sub algebra of M and N a common
von Neumann subalgebra of the (N,) such that z| is semi-finite. We call (N,.) independent
with respect to &, for every k we have &y(xy) =éy(x)éy(y) for x € N, and y €

w- ((IV])]:#I()

If a sequence (N, ) is independent with respect to ¢y and x;, € Ny, satisfy &y (ay) = 0,
then (x;) is a martingale difference sequence with respect to the filtration
(W=(Ny, ...,Nk)):;l. Also, if we let & denote the conditional expectation with respect to
W*(Ny, ..., Ni), then by (5) one obtains &,_; (x;) = éy(x,) = 0.

4.2. Lemma. Let (M, 1) be a von Neumann algebra equipped with normal, semi-finite,
faithful trace t satisfying (1) = a and let E be a p- convex (0 < p < o) quasi-Banach
function space on (0, @) which is an interpolation space for the couple (L, L®). Let (N;) be a
sequence of von Neumann subalgebra of the N, such that t|, is semi-finite. Suppose (Ny) is
independent with respect to &y. If x; € E(N,) satisfying Ey(x,) =0, then for any
Rademacher sequence (ry) ,

1X%=1%klleey = EllZk=1TeXk ey -
With constant depending only on E. If E is moreover g-concave for some g < oo, then

1 1
[ < max{ x|2)2 ) x;]?)z }
1% xellee S6 max | G2 (|Gl

Proof. It suffices to show that for any sequence of signs (€;);-; < {—1,1}".

IX%=1Exxiclleny Se k=1 %klle@ry - Define Ny = W*({Ny: € =1}) and N_ =
W*({Ny: €&, = —1}). Note that if £, = —1, then by independent and (5) it readily follows that
En, (x) = En(x;) = 0.Hence, Ey, Xk=1 Xk) = Xg,_, Xk T 2ep=—1En, (k) = Xg, =1 X and
analogously , €y (Xk=1xk) = X¢,=—1%k - Since conditional expectations are bounded on
E (M) by a constant c; depending only on E we obtain

1X %=1 gkxk”E(M) = ||Zsk=1 Xk — Zek=—1 xk”E(M) = ”(5N+ -

5N-)(Z’1§=1 xk)”E(M) Sk ||Z;<l=1 xk”E(Jv[) .

The final statement follows from theorem 3.11.

4.3. Remark. Note that 2 < py < gy < oo then E is an interpolation space for the couple
(L?,LP), forany p > q. However, there are such spaces which are not g-concave for any g <
co. Indeed, recall the Lorentz spaces LP'? on (0,) (see [18],section 4.4). Then the space
E = L¥>* has pg = qg = 3, but is o — concave .

4.4. Theorem. (non-commutative Rosenthal theorem ). Let M be a semi-finite , faithful
trace 7. Suppose E is a symmetric Banach function space on (0, «) satisfying either of the
following conditions

(i) E is an interpolation space for the couple (L2, LP) for some 2 < p < o and E is -
concave for some g < oo ;

(i) 2 <pg < qp < oo.

Let (N,) be a sequence of von Neumann subalgebra of M and N a common von
Neumann subglgebra of the (N;) such that 7|y is semi-finite . Suppose (N,) is independent
with respect to € := &y. Let E(x;,) = 0 forall k. Then, for any n,

1Xk=1 xk”E(M) =f max {”diag(xk);clﬂ||E(Mn(M)): ||(xk)z=1||5(m,g;lg): ||(xk);<l=1||5(m,g;z$)}- (21)
Proof. Assume that x, are bounded. Note that £ is bounded on E,)(M) under both
condition (i) and (ii) by proposition 2.6. We first prove that the maximum on the right hand
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side is an interpolation space for the couple (L?, L?) for some p < oo under both condition (i)
and (ii) , it follows from the discussion following (7) that the n-th Rademacher subspace
Rad,(E) is cy — complemented in E(L®Q®M), for some constant c; > 0 independent of n.
Recall that L1(M) has cotype g see (Pisier & Xu, 2003) i.e.

”dia.g(xk);cl=1”L‘I(Nn(M)) = (Zﬁﬂ”xk”Zq(M))q < |1X%k=1 rk®xk”Lq(L°°Q_§>M) .
By interpolation of this estimate for ¢ = 2 and q = p we obtain
IIdiag(xk)LlIIE(Nn(M)) Sk ||27<l=1 Tk®xk||E(L°°®M) )
and by Lemma 3.16
1Y me®@xxllgeogrry =5 12k Xkl -
Since the (Ny) are independent and we have £(x;) =0 for all k (so &(xjx;) =
E(xx)E(x;) = 0if j # k) we have by boundedness of £ in Eq,) (M),

|2 erixs :
1

— * 2 —
E(M) - ”ZKg(xkxk)”E(z)(M) -

|€ ke x) X xk)”i'(z)(]\/[) 2g 12k Xkl e »
and by applying this to the sequence (x;) we get
1
|G|,

We now prove the reverse inequality in (21). By Lemma 4.2 (case (i)) or proposition 3.17
(case (ii) ), respectively we have

1
< *x.)2
ISkxillzoo Se max || @erixdz]
By the quasi-triangle inequality in E;) (M) we have
1 :
|z, =6 (18 — EGix0lleg 00 + 1ECG0) ls,00 )

Notice that (|xk|2 — <€(|xk|2))k>1 is independent with respect to &, self-adjoint and ,

<g 2k xk"E(M)-

1
i EEE

E(M)} (22)

1

moreover, 8(|xk|2 — £(|xk|2)) = 0 for all k. Hence it is a martingale difference sequence
and we obtain again by Lemma 4.2 ( case (i)) or proposition 3.17 case (ii), since in this case
(1< PEy AEq, < ), respectively,

1
.
1% Xkt — ECexill o0 St ||(Zeleiz — EGixd) )’

E((M))

+

‘(zk (e(|x2|2))2)%
E@z)(M)

where in the final inequality we use the quasi-triangle inequality in E(,)(M; [2). Let x =
col(|x|) and y = diag(|xx|).Since u(xy) << u(x)u(y), we obtain

[REARE = |y

1
S ||l 2

E@)(M)

= “yx”E(z)(]v[n(]v[))

E5)(M) E ) (M (M)

2
4 EICYEYS)] EdTeYers)

<t IOy, = [|nEency):

1
—_— 1 2 z
= lldiag ()l p(ac,o0)) ”(Z"'x"l )2 B0

where in the final inequality we use the Hélder — type inequality in (Lindenstrauss &
Tzafriri, 1979), proposition 1.d.2 (i).
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Let £,, be the conditional expectation in E(Mn(Jv[ )) with respect to the von Neumann
subalgebra M,(N), ie. &, =EQla, ). Writing z = col(|x,|?), we have &,(z) =
col(€|x,|*) and so by boundedness of &, in E) (Mn(M)),

||(Zk(5|xk|2)2)§ E()(M) - H((gn(z))*gn(z))%

E(g)(Mn (M)

1
= < = 4 2
1€ (D lg ) (r,000) S 121155 (3, 0009) ”(Zklx"' )2 E) ()

Putting the estimates together we arrive at

||

on b = |ldiag (xi)llg (g, ay) and ¢ =

[REARE

1
In the other words, if we set = ” Crlxi1®)z

| elxel®?

e (Ildiagolls(ae, 00 | il

, we have a? S ab + 2. Solving this quadratic equation we obtain

E(M)
a Sg max{b,c}, or,
P , 2\\5
”(Zk|xk| )2 . Sk max{Ildlag(xk)IIE(Mn(M)), ||(Zk8(|xk| )2 E(M)}.
Applying this to the sequence (x;) gives
. . “12Y)3
”(Zk|xk| ) s 4 max{Ildlag(xk)IIE(Mn(M)), ||(Zkg(|xk| ) E(M)}.

The result follows by (22). The final assertion follows by a straightforward.

4.5. Remark.Theorem 4.4 generalizes the Rosenthal inequalities for commutative
Banach function spaces (Takesaki, 1972; remark 7) and for non-commutative L? — spaces
(Pisier & Xu, 2003; Theorem 2.1 ). These two results can be recovered by taking M =
L*(Q),N = C in the first case and by setting E = LP in the second. Note , however, that the
proof in (Pisier & Xu, 2003) is also valid for Haagerup LP? — spaces (i.e., if T is not a trace ).

4.6. Corollary. Letqg < p < o ,and q > 2. Let M be avon Neumann algebra equipped
with normal, faithful state ®. Suppose (N, ) is a sequence of von Neumann sub algebras of
M and N is a common von Neumann sub algebra of N, is independent with respect to € =
Ey. Let x, € LP(N,,) be such that €(x;) = 0 for all k then ,

185 Xillp ey =p max {11Ga) i ooy, 1@ o 2,209y 1N o a0y}
Proof. The case where p = q is trivial, suppose g < p < oo. In (Haagerup, Junge, & Xu,
2010), Lemma 6.14, it is shown that the von Neumann sub algebra R (N,,) are independent with
respect to Exyy = €y Whenever (N, is independent with respect to €y. By Theorem 4.4 we

obtain the Rosenthal inequalities in Lp'm(R(M)) for bounded elements. In (Junge & Xu,
1
2003), Lemma 1.1, it is shown that set M'D» dense in LP (M, ®), so it suffices to show that the

1
Rosenthal inequalities hold for the sequence (ka5>, where x; € Ny. Sete,, = e?[0,m], then

1
x,Dve,, is bounded linear operator in LP*(R(Ny), T). By the above we have

[tesmten] . =p ma e Cs0%em)l e 0% sty D%y i
Since LP* has Fatou norm, a standard argument shows that we can take the limit for
m — oo to obtain the result.
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