available at journal-ems.com

# Khintchine and Rosenthal Inequalities in Non-Commutative Symmetric Banach Functions Spaces

<sup>[1]</sup>Abubaker Mukhtatar I., <sup>[2]</sup>Hail Suwayhi. A., <sup>[3]</sup>Ibrahim Hamza H. <sup>[1]</sup>Math. PhD, Alimam Alhadi College, Omdurman, Sudan <sup>[2]</sup>Math. MSc, Saudi Arabia Ministry of Education, Saudi Arabia <sup>[3]</sup>Math. PhD, Omdurman Islamic University, Omdurman, Sudan

**Abstract**. We present a direct proof of the upper Khintchine inequality for non-commutative symmetric spaces and derive an improved version of Rosenthal Theorem for sums of independent random variables in non-commutative symmetric spaces. As a result we obtain a new proof of Rosenthal Theorem for L<sup>p</sup> spaces.

**Keywords:** Symmetric spaces, non-commutative spaces, Rosenthal inequalities, Khintchine inequalities

#### I. Introduction and Preliminaries

We introduce and extending several inequalities to the field of non-commutative symmetric Banch function spaces. We generalize some classical inequalities for independent random variables, due to H. P. Rothenthal. Rosenthal inequality (Astoshkin & Maligranda, 2004) was initially discovered to construct some new Banach spaces. However, Rosenthal inequality gives a good bound for the p-norm of independent random variables and has found many generalizations and applications.

The classical Rosenthal inequality (Montgmery-Smith, n.d.; Theorem3) assert that for  $p \ge 2$  and  $(x_i)$  a sequence of independent, mean zero random variable in  $L^p(\Omega)$ , where  $(\Omega, x, \mathbb{P})$  is a probability space, we has

$$\|\sum_{i=1}^{n} x_i\|_{L^p(\Omega)} \simeq_p \max \left\{ \|(x_i)_{i=1}^n\|_{L_p(L_p(\Omega))}, \|(x)_{i=1}^n\|_{L^2(L^2(\Omega))} \right\}, \tag{1}$$

**1.1. Definition**. Banach function space E on  $(0, \alpha)$  is called symmetric if for  $f \in S(0, \alpha)$  and  $g \in E$  with  $\mu(f) \leq \mu(g)$  we have  $f \in E$  and  $\|f\|_E \leq \|g\|_E$ .

Let  $(\mathcal{N}, \tau)$  be a semifinite von Neuman algebra then we can state the following definitions.

**1.2. Definition**. For  $\tau$  – measurabe operator x (affiliated with  $\mathcal{N}$ ) and t > 0, the singular value of x is defined by:

$$\mu_t(x) := \inf \left\{ S \ge 0 : \tau \left( \mathcal{X}_{[S,\infty)}(|x|) \right) \le t \right\}.$$

An equivalent formulation  $\mu_t(x) = \inf\{\|x(1-p)\|_{\infty} : \tau(p) \le t\}.$ 

**1.3. Definition**. Given a symmetric function space E on  $(0, \infty)$ , set  $E(\mathcal{N}, \tau) \coloneqq \{x; \mu(x) \in E\}$ . Then  $E(\mathcal{N}, \tau)$  is called the noncommutative symmetric space associated to  $\mathcal{N}$  and E.

Now we describe a special case of the main result (Theorem 4.4 in the following section 4). Let E be a separable symmetric Banach function space on  $(0, \infty)$  and  $\mathcal{M}$  be a semi finite von Neumann algebra. We denote by  $E(\mathcal{M})$  the non commutative symmetric space associated with E and  $\mathcal{M}$ . Let  $(\mathcal{N}_k)$  be a sequence of von Neumann subalgebra of the  $\mathcal{M}$ ,  $\mathcal{N}$  a common von Neumann sub algebra of the  $(\mathcal{N}_k)$  and suppose that  $(\mathcal{N}_k)$  is independent with respect to  $\mathcal{E}_{\mathcal{N}}$ , the conditional expectation with respect to  $\mathcal{N}$ . Let  $(x_k)$  be a sequence such that  $x_k \in E(\mathcal{N}_k)$  and  $\mathcal{E}_{\mathcal{N}}(x_k) = 0$  for all k. Let  $diag(x_k)$  denote the  $n \times n$  diagonal matrix with  $x_1, \ldots, x_n$  on its diagonal. Then for any n

$$\|\sum_{k=1}^{n} x_{k}\|_{E(\mathcal{M})} \simeq_{E} \max \left\{ \|diag(x_{k})_{k=1}^{n}\|_{E(\mathcal{M}_{n}(\mathcal{M}))}, \|(\sum_{k=1}^{n} \varepsilon_{\mathcal{N}} |x_{k}^{*}|^{2})^{\frac{1}{2}}\|_{E(\mathcal{M})} \right\}, \quad (2)$$

provided *E* satisfies one of the following conditions:

- (i) either E has Boyd indices satisfying  $2 < p_E \le q_E < \infty$ ,
- (ii) E is a symmetric Banach function space which is an interpolation space for couple  $(L^2, L^p)$  and q concave, for some  $2 \le p < \infty$  and  $q < \infty$ .

Corresponding to the two conditions defined above, we need two different types of Khintchine inequalities in the proof of (2). Under condition (i), a key tool needed in proving the above generalization of Rosenthal's Theorem is the following Khintchine type inequality, considered in (Lemardy & Sukochev, 2008). Let  $\mathcal{M}$  be a semi-finite von Neumann algebra. Suppose E is a symmetric Banach function space on  $(0, \infty)$  with  $1 < p_E \le q_E < \infty$  which is either separable or the dual of separable space. The main result in (Lemardy & Sukochev, 2008). Theorem1.1 states that for any finite sequence  $(x_k)$  in  $E(\mathcal{M})$  and any Rademacher sequence  $(r_k)_{k=1}^{\infty}$  we have

$$\|\sum_{k} r_{k} \otimes x_{k}\|_{E(L^{\infty}(\Omega) \bar{\otimes} \mathcal{M})} \lesssim_{E} \max \left\{ \|(x_{k})\|_{E(\mathcal{M}; l_{c}^{2})}, \|x_{k}\|_{E(\mathcal{M}; l_{r}^{2})} \right\}. \tag{3}$$

This inequality is derived by duality form the following inequality, which holds for a larger class of spaces: if  $q_E < \infty$ , then

$$\inf\left\{\|y_k\|_{E\left(\mathcal{M};l_c^2\right)}+\|(z_k)\|_{E\left(\mathcal{M};l_r^2\right)}\right\}\lesssim E\|r_k\otimes x_k\|_{E\left(L^\infty(\Omega)\bar{\otimes}\mathcal{M}\right)}\,,$$

where the infimum is taken over all decompositions  $x_k = y_k + z_k$ . In the work by Astashkin (2010), it was left as an open question whether (3) holds if  $q_E < \infty$ , with no further assumption on the lower Boyed index of E. We answer this question in the positive by giving a direct proof in the following 4.1 Theorem of section 4. In fact, we obtain (3) also for quasi-Banach function spaces and this proves to be essential for the proof of (2).

For any finite sequence 
$$(x_k)$$
 in  $E(\mathcal{M})$  and Rademacher sequence  $(r_k)_{k=1}^{\infty}$  we have 
$$E\|\sum_k r_k x_k\|_{E(\mathcal{M})} \lesssim \max\{\|(x_k)\|_{E(\mathcal{M}); l_c^2}, \|(x_k)\|_{E(\mathcal{M}); l_r^2}\}. \tag{4}$$

## **II. Symmetric Banach Function Spaces**

Let  $0 < \alpha \le \infty$ . For a measurable , finite function f on  $(0,\alpha)$  we define its distribution function by  $d(v;f) = \lambda(t \in (0,\alpha): |f(t)| > v$ ) for v > 0, where  $\lambda$  denotes Lebesgue measure. For  $f,g \in (0,\alpha)$  we say f is submajorized by g and we write  $f < \emptyset$ , if  $\int_0^t \mu_s(f) ds \le \int_0^t \mu_s(g) ds$  for all t > 0. A quasi-Banach function space E on  $(0,\infty)$  is called symmetric if for all E of E and E with E is called strongly symmetric if E, in addition, for E with E is follows that E and E with E is called fully symmetric. Fully symmetric Banach function spaces on E and E are exact interpolation spaces for the couple E symmetric Banach function spaces on E with E is called fully symmetric. Fully symmetric Banach function spaces on E symmetric spaces covers many interesting spaces from harmonic a analysis and interpolation theory, which as Lorentz, Marcinkiewicz and Orlicz spaces.

A symmetric (quasi-Banach function space is said to have a Fatou quasi-norm if for every net  $(f_{\beta})$  in E and  $f \in E$  satisfying  $0 \le f_{\beta} \uparrow f$  we have  $||f_{\beta}||_{E} \uparrow ||f||_{E}$ . The space E is said to have the Fatou property if for every  $(f_{\beta})$  in E and  $f \in S(0,\alpha)$  satisfying  $0 \le f_{\beta} \uparrow f$  and  $\sup_{\beta} ||f_{\beta}||_{E} < \infty$  we have  $f \in E$  and  $||f_{\beta}||_{E} \uparrow ||f||_{E}$ .

Let  $\mathcal M$  be a von Neumann algebra equipped with a normal faithful trace state  $\tau\colon\mathcal M\to\mathbb C$ , that is  $\tau(1)=1$  and  $\tau(xy)=\tau(yx)$ . Then  $L_p(\mathcal M,\tau)$  is completion of  $\mathcal M$  with respect to  $\|x\|_p=\left[\tau|x|^p\right]^{1/p}$ . It is well known (Johnson & Schechtman, 1988; Takesaki, 1972) that  $\|.\|_p$  is a norm for  $1\leq p\leq \infty$ . In particular  $\|.\|_\infty=\|.\|$ .  $\|.\|$  denote operator norm. Let  $\mathcal N\subset\mathcal M$  be a von Neumann subalgebra. Then there exist a unique conditional expectation  $\mathcal E_N\colon\mathcal M\to\mathcal N$  such that  $\mathcal E_{\mathcal N}(1)=1$  and  $\mathcal E_{\mathcal N}(axb)=a\mathcal E_{\mathcal N}(x)b$ ,  $a,b\in\mathcal N$  and  $\in\mathcal M$ . We say that two

subalgebras  $\mathcal{N} \subset A, B \subset \mathcal{M}$  are independent over  $\mathcal{N}$  if  $\mathcal{E}_{\mathcal{N}}(ab) = \mathcal{E}_{\mathcal{N}}(a)\mathcal{E}_{\mathcal{N}}(b), a \in A, b \in B$ .

For any 
$$x \in L^1 + L^\infty(\mathcal{M})$$
,  $\mathcal{E}(x)$  is the unique element in  $L^1 + L^\infty(\mathcal{N})$  satisfying  $\tau(xy) = \tau(\mathcal{E}(x)y)$ , for all  $\in L^1 \cap L^\infty(\mathcal{N})$ . (5)

The  $\mathcal{E}$  is called conditional expectation with respect to the von Neumann sub algebra  $\mathcal{N}$ .

- **2.1. Proposition** (Johnson & Schechtman, 1988). Let  $\mathcal{M}$  be a von Neumann algebra equipped with a normal, semi-finite, faithful trace  $\tau$  and let  $\mathcal{N}$  be a von Neumann subalgebra such that restriction of  $\tau$  to  $\mathcal{N}$  a gain semi-finite. Then there is a unique linear map  $\mathcal{E}: L^1 + L^{\infty}(\mathcal{M}) \to L^1 + L^{\infty}(\mathcal{N})$  satisfying the following properties:
  - (a)  $\mathcal{E}(x^*) = \mathcal{E}(x)^*$ ;
  - (b)  $\mathcal{E}(x) \ge 0$  if  $x \ge 0$ ;
  - (c) if  $x \ge 0$  and  $\mathcal{E}(x) = 0$  then x = 0;
  - (d)  $\mathcal{E}(x) = x$  for any  $x \in L^1 + L^{\infty}(\mathcal{N})$ ;
  - (e) $\mathcal{E}(x) * \mathcal{E}(x) \le \mathcal{E}(x * x)$  for  $x \in \mathcal{M}$ ;
  - (f)  $\mathcal{E}$  is normal, i.e.  $x_{\alpha} \uparrow x$  implies  $\mathcal{E}(x_{\alpha}) \uparrow \mathcal{E}(x)$  for  $(x_{\alpha}), x \in \mathcal{M}$ ;
- $(g)\|\mathcal{E}(x)\|_1 \leq \|x\|_1$ , for all  $x \in L^1(\mathcal{M})$ ,  $\|\mathcal{E}(x)\|_{\infty} \leq \|x\|_{\infty}$ , for all  $x \in \mathcal{N}$  and so  $\mathcal{E}(x) \prec \prec x$  for all  $\in L^1 + L^{\infty}(\mathcal{M})$ ;
- (h) $\mathcal{E}(xy) = x\mathcal{E}(y)$  if  $x \in L^1(\mathcal{N})$ ,  $y \in L^\infty(\mathcal{M})$  and  $\mathcal{E}(xy) = \mathcal{E}(x)y$  whenever  $\in L^1(\mathcal{M}), y \in L^\infty(\mathcal{N})$ .
- **2.2. Definition**. Let  $0 < \alpha \le \infty$  and let E be a symmetric quasi-Banach function space on  $(0, \alpha)$ . For any  $0 < \alpha < \infty$  we define the dilation operator  $D_n$  on  $S(0, \alpha)$  by  $(D_n f)(s) = f(ns)\chi_{(0,\alpha)}(ns)$ .

If E is a symmetric quasi-Banach function space on  $(0, \alpha)$ , then  $D_n$  is a bounded linear operator.

Define the lower Boyd index  $p_E$  of E by

$$p_E = \sup \Big\{ p > 0 : \ \exists \ c > 0 \ , \forall 0 < n \le 1 \ \|D_n f\|_E \le c n^{\frac{-1}{p}} \|f\|_E \Big\},$$

and the upper Boyd index by

$$q_E = inf \left\{ q > 0 : \exists c > 0 \forall n \ge 1 \, \|D_n f\|_E \le c n^{\frac{-1}{q}} \|f\|_E \, \right\}.$$

This above two definitions of lower and upper Boyd index can be denoted by

$$p_{E} = \lim_{s \to \infty} \frac{\log s}{\log \|D_{1/s}\|} = \sup_{s > 1} \frac{\log s}{\log \|D_{1/s}\|},$$

$$q_{E} = \lim_{s \to 0} \frac{\log s}{\log \|D_{1/s}\|} = \inf_{0 < s < 1} \frac{\log s}{\log \|D_{1/s}\|}.$$

Note that  $0 \le p_E \le q_E \le \infty$ . If E is a symmetric Banach function space then  $1 \le p_E \le q_E \le \infty$ . Let  $0 < p_E$ ,  $q_E \le \infty$ . A symmetric quasi-Banach function space E is said to be p - convex if there exists a constant c > 0 such that for any finite sequence  $(x_i)_{i=1}^n$ ,

$$\begin{split} & \left\| \left( \sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \right\|_E \leq c \left( \sum_{i=1}^{n} \|x_i\|^p \right)^{\frac{1}{p}}, \quad (if \ 0$$

A symmetric quasi-Banach function space E is said to be q-concave if there exists a constant c>0 such that for any finite sequence  $(x_i)_{i=1}^n$  in E we have  $\left(\sum_{i=1}^n \|x_i\|_E^q\right)^{\frac{1}{q}} \le c \left\| \left(\sum_{i=1}^n |x_i|^q\right)^{\frac{1}{q}} \right\|_F$ ,  $(if\ 0 < q < \infty)$ ,

$$\max_{1 \le i \le n} \|x_i\|_E \le c \|\max_{1 \le i \le n} \|x_i\|_E \quad (if \quad q = \infty).$$

We can conclude that every quasi-Banach function is  $\infty - concave$  and any Banach function space is 1 - convex. We note that if E is p - convex then  $p_E \ge p$  and if E is q - convex

concave then  $q_E \leq q$ . For  $1 \leq r < \infty$ , let the r-concavification and r-convexification of E be defined by  $E_{(r)} \coloneqq \{g \in S(0,\alpha) \colon |g| = f^r; f \in E\}, \|g\|_{E_{(r)}} = \|f\|_E^r$ 

 $E^{(r)} \coloneqq \left\{g \in S(0,\alpha) \colon |g| = f^{\frac{1}{r}}; f \in E\right\}, \|g\|_{E^{(r)}} = \|f\|_{E}^{\frac{1}{r}}, \text{ respectively (Lindenstrauss & Tzafriri, 1979) (p.53), if $E$ is a (symmetric) Banach function space, then $E^{(r)}$ is a (symmetric) Banach function space. From the above definitions it follows that <math>p_{E_{(r)}} = \frac{1}{r} p_E$ ,  $q_{E_{(r)}} = \frac{1}{r} q_E$ ,  $q_{E^{(r)}} = r p_E$ ,  $q_{E^{(r)}} = r q_E$ .

**2.3. Lemma** (Johnson & Schechtman, 1988). Let E be a symmetric quasi-Banach function space. Then for every a constant p > 0 there exists a constant c > 0 and  $0 < r \le p$  such that for all  $x_i \in E$ 

$$\left\| \left( \sum_{i=1}^{\infty} |x_i|^p \right)^{\frac{1}{p}} \right\|_E \le c \left( \sum_{i=1}^{\infty} \|x_i\|_E^r \right)^{\frac{1}{r}}. \tag{6}$$

For  $f \in (0, \alpha)$  we set

$$K(t, f; L^p, L^q) = \inf \left( \|f_0\|_{L^p(0,\alpha)} + \|f_1\|_{L^q(0,\alpha)} \right) f = f_0 + f_1, (t > 0).$$

- **2.4. Theorem**. Let  $1 \le p < q \le \infty$  and  $\frac{1}{p'} + \frac{1}{p} = 1$ ,  $\frac{1}{q'} + \frac{1}{q} = 1$ . Suppose E is a separable Banach-function space on  $(0, \alpha)$  and suppose  $E^{\times}$  is an interpolation space for the couple  $\left(L^{p'}(0, \alpha), L^{q'}(0, \alpha)\right)$ . Then E is an interpolation space for the couple  $\left(L^{p}(0, \alpha), L^{q}(0, \alpha)\right)$ .
- **2.5. Theorem**. Let  $(S, \Sigma, \mu)$  be a measure space and let  $1 \le p, q \le \infty$ . Then every interpolation space E for the couple  $(L^p(S), L^q(S))$  is given by a k-method i.e., there is a Banach function space f on  $(0, \infty)$  such that  $f \in E$  if and only if  $t \to K(t, f; L^p, L^q) \in f$  and there exist constants c, C > 0 such that

$$c\|t \to K(t,f;L^p,L^q)\|_f \le \|f\|_E \le C\|T \mapsto K(t,f;L^p,L^q)\|_F.$$

**2.6. Proposition**. Let  $1 \le p \le q \le \infty$ . Suppose E is a symmetric quasi-Banach function space on  $(0, \alpha)$  which is an interpolation space for couple  $(L^p(0, \alpha), L^q(0, \alpha))$ . Then for any  $0 \le s - 1 < \infty$ ,  $E_{(s-1)}$  respectively  $E^{(s-1)}$  is an interpolation space for the couple  $\left(L^{\frac{p}{s-1}}(0, \alpha), L^{\frac{q}{s-1}}\right)$  respectively  $\left(L^{p(s-1)}(0, \alpha), L^{q(s-1)}(0, \alpha)\right)$ .

**Proof**. By Theorem 2.5. there exists a Banach function space F such that  $||f||_E = ||t \mapsto K(t, f; L^p, L^q)||_F$ .

For any p > 0 and  $a, b \ge 0$ ,  $\alpha_p(a^p + b^p) \le (a + b)^p \le \beta_p(a^p + b^p)$ , for some constants  $\alpha_p$ ,  $\beta_p$  depending only on p. Using this fact, it is not difficult to show that there are constants depending only on s such that

$$K\left(t,|f|^{\frac{1}{s-1}};L^p,L^q\right)\simeq K\left(t^{s-1},f;L^{\frac{p}{s-1}},L^{\frac{q}{s-1}}\right).$$

Let T be a linear operator on  $L^{\frac{p}{s-1}} + L^{\frac{q}{s-1}}$  which is bounded on  $L^{\frac{p}{s-1}}$  and  $L^{\frac{q}{s-1}}$ . Then

$$\|Tf\|_{E_{(s-1)}}\simeq \left\|t\mapsto K\left(t^{s-1},Tf;L^{\frac{p}{s-1}},L^{\frac{q}{s-1}}\right)^{\frac{1}{s-1}}\right\|_F\lesssim \left\|t\mapsto\right\|_F$$

$$K\left(t^{s-1},f;L^{\frac{p}{s-1}},L^{\frac{q}{s-1}}\right)^{\frac{1}{s-1}}\bigg|_{E}\simeq \|f\|_{E_{(s-1)}}.$$

We can similarly prove the assertion for  $E^{(s-1)}$ .

**2.7. Lemma**. Let E be a symmetric quasi-Banach space on  $(0, \alpha)$  with  $p_E > 0$ . Then E is an interpolation space for the couple  $(L^p(0, \alpha), L^q(0, \alpha))$ .

**Proof.** Suppose first  $p_E > 1$ . We claim that E is fully symmetric up to a constants i.e., there is a constant  $c_E > 0$  depending only on E, such that if  $f \in S(0, \alpha)$ ,  $g \in E$  and  $f \ll g$ ,

then  $f \in E$  and  $||f||_E \le c_E ||g||_E$ . Let  $g^{**}(t) = \frac{1}{t} \int_0^t \mu_S(g) ds$  be the Hardy-little wood maximal function of g. By (Johnson & Schechtman, 1988), Theorem (2i), the map  $g \to g^{**}$  is abounded quasi-linear map on E and  $||g^{**}||_E \le c_E ||g||_E$ . By assumption  $f^{**} \le g^{**}$ , so  $f^{**} \in E$  and  $||f^{**}||_E \le ||g^{**}||_E$ , as E is symmetric. Finally,  $\mu(f) \le f^{**}$ , so  $f \in E$  and  $||f||_E = ||\mu(f)||_E \le ||f^{**}||_E$ . This completes the proof of the claim.

- **2.8. Theorem** (Kalton & Montgonetry-Smith, 2003). Let E be a symmetric quasi-Banach function space on  $(0, \alpha)$  which either has order continuous quasi-norm or has the Fatou property. Let 0 . Then <math>E is an interpolation space for the couple  $(L^p(0, \alpha), L^q(0, \alpha))$  whenever one of the following conditions holds:
  - (i)  $p < p_E \le q_E < q$ ;
  - (ii) E is p-convex with convexity equal to 1, for some  $q_E > p$ ;
- (iii) E is r conex with convexity constant equal to 1, for some  $0 < r < \infty$ , E is q concave with concavity constant equal to 1 and  $p_E > p$ ;
  - (iv) E is p convex with convexity constant equal to 1 and q concave.

**Proof.** The first assertion is the well known Boyd interpolation theorem which was generalized to symmetric quasi-Banach function spaces in (Johnson & Schechtman, 1988), theorem3. To prove the second assertion suppose first that  $p \ge 1$ . Then  $E_{(p)}$  is a symmetric Banach function space and satisfies  $q_{E_{(p)}} < \frac{q}{p}$ . Moreover,  $E_{(p)}$  has the Fatou property or is separable if E is. By (Astoshkin & Maligranda, 2004), the theorem 1,  $E_{(p)}$  is an interpolation space for the couple  $(L^1, L^{\frac{q}{p}})$ . By proposition 2.6 we now find that E is an interpolation space for the couple  $(L^p, L^q)$ . Finally, if  $0 then we find by the above that <math>E^{\left(\frac{1}{p}\right)}$  is an interpolation space for the couple  $(L^1, L^{\frac{q}{p}})$ . Hence, by proposition 2.6, E is an interpolation space for the couple  $(L^p, L^q)$ . The third assertion for  $q = \infty$  is proved in Lemma 2.7. For the remaining cases we may assume, by proposition 2.6, that r = 1. Under this assumption, E is a symmetric Banach function space and hence we can deduce the result by duality. Observe that E is separable, as  $q < \infty$ . Moreover,  $E^{\times}$  is q' - convex and  $q_{E^{\times}} < p'$ , where  $\frac{1}{p'} + \frac{1}{p} =$ 1,  $\frac{1}{a'} + \frac{1}{a} = 1$ . By the second assertion we obtain that  $E^{\times}$  is an interpolation space for the couple  $(L^{q'}, L^{p'})$ . The result now follows from Theorem 2.4. For the final assertion, suppose first that  $p = 1, q = \infty$ . Then E is a symmetric Babach function space which is separable or has the Fatou property. Hence E is fully symmetric under these assumptions and the result now well-known Calderon-Mitjagin theorem, (Kreĭn, Petunin, & Semenov, 1982), theorem 4.3. The case where p > 1,  $q = \infty$  follows from this by proposition 2.6. If p = 1,  $q < \infty$ , then E is a separable symmetric Banach function space and in this case the result can be deduced from the case p > 1,  $q = \infty$  by duality using theorem 2.4 in the interpolation space for the couple  $(L^1, L^{\frac{q}{p}})$ . Therefore, by proposition 2.6, E is an interpolation space for the couple  $(L^p, L^q)$ .

**2.9. Theorem**. For  $1 \le p < q \le \infty$ . Suppose E is a fully symmetric quasi-Banach function space on  $(0, \alpha)$  which is an interpolation space for the couple  $(L^p(0, \alpha), L^q(0, \alpha))$ . Let M be a semi-finite von Neumann algebra equipped with a normal, semi-finite, faithful trace  $\tau$  satisfying  $\tau(1) = \alpha$ . Then E(M) is an interpolation space for the couple  $(L^p(M), L^q(M))$ .

Let  $(r_k)$  be Rademacher sequence of independent  $\{-1,1\}$  – valued random variables on a probability space  $(\Omega, F, \mathbb{P})$  such  $P(r_k = 1) = P(r_k = -1) = \frac{1}{2}$  for all k. Then for 1 , then nth Rademacher projection

$$R_n(x) = \sum_{j=1}^n r_j \otimes \mathcal{E}_{c_1 \bar{\otimes} \mathbf{M}} \left( (r_j \otimes 1) x \right) \tag{7}$$

is bounded on  $L^p(L^\infty(\Omega) \overline{\otimes} M)$  and , moreover , for all  $n \geq 1$  we have  $\|R_n\| \leq c_p$ , for some constant  $c_p$  depending only on p. if E is a symmetric quasi-Banach function space on  $(0,\alpha)$  with  $1 < p_E \leq q_E < \infty$  , we find by interpolation that  $R_n$  defines a bounded projection in  $E(L^\infty(\Omega) \overline{\otimes} M)$  and  $\|R_n\| \leq c_E$  for some  $n \geq 1$ , where  $c_E$  is a constant depending only on E. We let  $Rad_n(E)$  denote the image of  $R_n$ .

## **III. Non-Commutative Khintchine Inequalities**

We prove two types of non commutative Khintchine inequalities for non commutative symmetric spaces the main results in this section are Theorem 3.1 and 3.11 below. Recall the notation

$$\|(x_i)\|_{E(\mathcal{M};l_c^2)} = \|(\sum_i x_i^* x_i)^{\frac{1}{2}}\|_{E(\mathcal{M};l_r^2)}; \|(x_i)\|_{E(\mathcal{M};l_r^2)} = \|(\sum_i x_i^* x_i)^{\frac{1}{2}}\|_{E(\mathcal{M})},$$

for a finite sequence  $(x_i)$  in  $E(\mathcal{M})$ .

A normal faithful, semi-finite trace  $\tau$  satisfying  $\tau(1) = \alpha$ . Suppose E is a symmetric quasi-Banach function space on  $(0, \alpha)$  which is p-convex for some  $0 and satisfies <math>q_E < \infty$ . Then

$$\|\sum_{i} r_{i} \otimes x_{i}\|_{E(L^{\infty} \bar{\otimes} \mathcal{M})} \lesssim_{E} \max \{\|(x_{i})\|_{E(\mathcal{M}; l_{c}^{2})}, \|(x_{i})\|_{E(\mathcal{M}; l_{r}^{2})}\}, \tag{8}$$

for any Rademacher sequence  $(r_i)$  and any finite sequence  $(x_i)$  in  $E(\mathcal{M})$ .

**3.1. Theorem** (Lust-Piguard & Pisier, 1991). Let  $1 \le q < \infty$  and let M be a von Neumann algebra equipped with a normal, faithful, semi-finite trace. If  $2 \le q < \infty$  then

$$E \| \sum_{i} r_{i} x_{i} \|_{L^{q}(\mathcal{M})} \simeq_{q} \max \left\{ \| (x_{i}) \|_{L^{q}(\mathcal{M}; l_{r}^{2})}, \| (x_{i}) \|_{L^{q}(\mathcal{M}; l_{r}^{2})} \right\},$$

For any finite sequence  $(x_i)$  in  $L^q(\mathcal{M})$ . On the other hand, if  $1 \le q < 2$  then

$$E \|r_i x_i\|_{L^q(\mathcal{M})} \simeq_q \inf \left\{ \|(y_i)\|_{L^q(\mathcal{M}; l_r^2)} + \|(z_i)\|_{L^q(\mathcal{M}; l_r^2)} \right\}.$$

where the infimum is taken over all decompositions  $x_i = y_i + z_i$  in  $L^q(\mathcal{M})$ .

**3.2. Lemma**. Suppose that  $0 < \alpha \le \infty$ . Let E be a symmetric quasi-Banach function space on  $(0,\alpha)$ . For any  $q_E(0,\infty)$  define  $\Phi_q\colon (0,1)\to (0,\infty)$  by  $\Phi_q(t)=t^{-\frac{1}{q}}$ . If  $q_E< q$ , then there is a constant  $c_{q,E}>0$  such that for any  $f\in E$  we have

$$||f \otimes \Phi_q||_{E(0,\alpha) \times (0,1)} \le c_{q,E} ||f||_{E(0,\alpha)}.$$
 (9)

Conversely if (9) holds for every  $f \in E$  then  $q_E \leq q$ .

**Proof**. Let  $q_E < q$  and  $f \in E_+$ . We can note first that

$$\left\| f \otimes \Phi_q \right\|_{E(0,\alpha) \times (0,1)} = \left\| f(s) t^{-\frac{1}{q}} \right\|_{E(0,\alpha) \times (0,1)} \le$$

$$\left\| f(s) \sum_{n=0}^{\infty} 2^{\frac{n+1}{q}} \chi_{(2^{-n-1}, 2^{-n}]} \right\|_{E(0, \alpha) \times (0, 1)} \le$$

$$c\left(\sum_{n=0}^{\infty} 2^{\frac{r(n+1)}{q}} \|f(s)\chi_{(2^{-n-1},2^{-n}]}\|_{E(0,\alpha)\times(0,1)}\right)^{\frac{1}{r}};$$

Where c > 0 and  $0 < r \le 1$  as in (6).

Fix  $q > q_0 > q_E$ . Observe that  $f(s)\chi_{(2^{-n-1},2^{-n}]}(t)$  has the same distribution on  $(0,\alpha) \times (0,1)$  as  $D_{2^{n+1}}f$  on  $(0,\alpha)$ . Hence, as E is symmetric, we finally obtain

$$\begin{split} & \left\| f \otimes \Phi_{q} \right\|_{E(0,\alpha) \times (0,1)} \leq c \left( \sum_{n=1}^{\infty} 2^{r \left( \frac{n+1}{q} \right)} \| D_{2^{n+1}} f(t) \|_{E(0,\alpha)}^{r} \right)^{\frac{1}{r}} \\ & \leq c C_{q_{0}} \left( \sum_{n=1}^{\infty} 2^{\frac{r(n+1)}{q}} 2^{\frac{-r(n+1)}{q_{0}}} \right)^{\frac{1}{r}} \| f \|_{E(0,\alpha)} \lesssim_{q,E} \| f \|_{E(0,\alpha)} \text{ as } q > q_{0}. \end{split}$$

To prove the second assertion notice first that since  $\mu(D_s, f) \leq D_s \mu(f)$  for all  $s \in$  $(0,\infty)$  and  $f \in E$ , it suffices to show that for all s > 1 and  $f \in E_+$  we have  $||D_s f||_E \le$  $cs^{-\frac{1}{q}}||f||_E$ . Fix  $a \in (0,1)$  and observe that

$$\|f \otimes \Phi_q\|_{E(0,\alpha) \times (0,1)} = \|f(s)t^{-\frac{1}{q}}\|_{E(0,\alpha) \times (0,1)} \ge \|f(s)a^{-\frac{1}{q}}\chi_{\left(\frac{2}{\alpha'}a\right]}(t)\|_{E(0,\alpha) \times (0,1)} = a^{-\frac{1}{q}}\|D_{\frac{2}{a}}f\|_{E(0,\alpha)},$$

where in the final step we use that  $f(s)\chi_{\left(\frac{\alpha}{2},\alpha\right]}(t)$  has the same distribution on  $(0,\alpha)$ .

Hence

$$\left\| D_{\frac{2}{a}} f \right\|_{E} \le a^{\frac{1}{q}} \left\| f \otimes \Phi_{q} \right\|_{E} \le c_{q,E} \left( \frac{2}{a} \right)^{-\frac{1}{q}^{\frac{1}{q}}} \left\| f \right\|_{E}.$$

In other wise, for any  $s \ge 2$  we obtain

 $||D_s f||_E \le c_{q,E} 2^{\frac{1}{q}} s^{-\frac{1}{q}} ||f||_E$ . Clearly this implies that  $q_E \le q$ . **3.3. Lemma.** Let  $0 < \alpha \le \infty$ . For  $0 < q < \infty$  let  $\Phi_q$  in  $(0,\alpha) \to (0,1)$  be given by  $\Phi_a(t) = t^{-\frac{1}{q}}$ . Let  $f:(0,\alpha) \to [0,\infty]$  be measurable and a. e. finite. Then for every  $\geq 0$ .

$$d(v; f \otimes \Phi_q) = \int_{\{f \le v\}} \left(\frac{f(s)}{v}\right)^q ds + d(v; f).$$

**Proof**. By a change of variable.

$$\lambda\left((s,t)\in(0,\alpha)\to(0,1):f(s)\Phi_{q}(t)>v\right)=\int\limits_{0}^{1}\lambda\left(s\in(0,\alpha):f(s)t^{-\frac{1}{q}}>v\right)dt$$
 
$$=\int_{0}^{1}\lambda(s\in(0,\alpha):f(s)>vu)qu^{q-1}du$$
 
$$=\int_{0}^{\infty}\lambda\left(s\in(0,\alpha):min\left(\frac{f(s)}{v},1\right)>u\right)qu^{q-1}du=\left\|min\left(\frac{f}{v},1\right)\right\|_{L^{q}(0,\alpha)}^{q}$$
 
$$=\int_{\{f\leq v\}}\left(\frac{f(s)}{v}\right)^{q}ds+\lambda(s\in(0,\alpha):f(s)>v).$$
 **3.4.Lemma.**(Chebyshev's inequality) Let  $0< q<\infty$  and  $x\in L^{q}(M)$ . Then for any  $>0$ ,

- $d(v;x) \le \frac{\|x\|_{L^q(\mathsf{M})}^q}{v^q}$
- **3.5. Lemma.** Let  $\mathcal M$  be a semi-finite von Neumann algebra with a normal, semi-finite, faithful trace  $\tau$  satisfying  $\tau(1) = \alpha$ . Suppose E is a symmetric quasi-Banach function space on  $(0,\alpha)$  which is p-convex for some  $0 and suppose that for any finite sequence <math>(x_k)$ of self-adjoint elements in  $E(\mathcal{M})$  we have

$$\|\sum_k r_k \otimes x_k\|_{E(L^{\infty} \overline{\otimes} \mathcal{M})} \lesssim_E \|(\sum_k x_k^2)^{\frac{1}{2}}\|_{E(\mathcal{M})}.$$

Then, for any finite sequence  $(x_k)$  in  $E(\mathcal{M})$ ,

$$\|\sum_{k} r_{k} \otimes x_{k}\|_{E(L^{\infty} \overline{\otimes} \mathcal{M})} \lesssim_{E} \max \{\|(x_{k})\|_{E(\mathcal{M}; l_{c}^{2})}, \|(x_{k})\|_{E(\mathcal{M}; l_{r}^{2})}\}.$$

On the other hand, if we have

$$\mathbb{E}\|\sum_{k} r_k x_k\|_{E(\mathcal{M})} \lesssim_E \|\sum_{k} x_k^2\|_{E(\mathcal{M})}$$

for any finite sequence  $(x_k)$  of self-adjoint elements in  $E(\mathcal{M})$ , then for any finite sequence  $(x_k)$  in  $E(\mathcal{M})$ ,

$$\mathbb{E}\|\sum_{k} r_{k} x_{k}\|_{E(\mathcal{M})} \lesssim_{E} \max \{\|(x_{k})\|_{E(\mathcal{M}; l_{c}^{2})}, \|(x_{k})\|_{E(\mathcal{M}; l_{r}^{2})} \}.$$

**Proof.** Let  $(x_k)_{k=1}^n$  be any finite sequence in  $E(\mathcal{M})$ , put

$$x_k = y_k + iz_k$$
,  $y_k^* = y_k$ ,  $z_k^* = z_k$ , and notice that

$$0 \le y_k^2, z_k^2 \le y_k^2 + z_k^2 = \frac{1}{2}(x_k^*x_k + x_kx_k^*), 1 \le k \le n$$
. Hence,

 $(\sum_{k} y_{k}^{2})^{\frac{1}{2}}, (\sum_{k} z_{k}^{2})^{\frac{1}{2}} \leq \left(\sum_{k} \frac{1}{2} (|x_{k}|^{2} + |x_{k}^{*}|^{2})\right)^{\frac{1}{2}} = \frac{1}{\sqrt{x}} \left(\sum_{k} (|x_{k}|^{2} + |x_{k}^{*}|^{2})\right)^{\frac{1}{2}}$ . The assertion now readily follow from a straightforward computation.

**3.6. Theorem**. Let.  $0 < \alpha \le \infty$  and let  $\mathcal{M}$  be a von Neumann algebra equipped with a normal, faithful, semi-finite trace  $\tau$  satisfying  $\tau(1) = \alpha$ . Suppose E is a symmetric quasi-Banach function space on  $(0, \alpha)$  which is p-convex for some  $0 and satisfies <math>q_E < \infty$ . Then

$$||r_i \otimes x_i||_{E(L^{\infty} \bar{\otimes} \mathcal{M})} \lesssim_E \max \Big\{ ||(x_i)||_{E(\mathcal{M}; l_c^2)}, ||(x_i)||_{E(\mathcal{M}; l_r^2)} \Big\}, \tag{10}$$

For any Rademacher sequence  $(r_i)$  and any finite sequence  $(x_i)$  in  $E(\mathcal{M})$ .

**Proof.** By Lemma 3.5, it suffices to consider the case where  $x_1, ..., x_n$  are self-adjoint. We begin by showing that for any  $q \in [1, \infty)$  and v > 0

$$d(v; \sum_{i} r_i \otimes x_i) \le C_q d(v; f \otimes \Phi_q),$$

where  $f:(0,\alpha)\to [0,\infty]$  and  $\Phi_q:(0,1)\to (0,\infty)$  are defined by  $f(s)=\mu_s\left((\sum_i x_i^2)^{\frac{1}{2}}\right)$  and  $d_q(t)=t^{-\frac{1}{q}}$  and  $C_q$  is constant depending only on q. Fix v>0. Define  $\hat{e}_v=1\otimes e_v$ , where  $e_v=e^{\left(\sum_i x_i^2\right)^{\frac{1}{2}}}[0,v]$ , then  $\hat{e}_v\frac{1}{v}=1\otimes e^{\frac{1}{v}}=1\otimes e^{\left(\sum_i x_i^2\right)^{\frac{1}{2}}}(v,\infty)$ . Since  $d(v;a+b)\leq d\left(\frac{v}{2};q\right)+d\left(\frac{v}{4};\hat{e}^{\frac{1}{v}}\sum_i r_i\otimes x_i\hat{e}^{\frac{1}{v}}\right)$ . Recall that if  $y\in S(\tau)$  and e is a finite trace projection in , then  $\mu_t(ye)=\mu_t(ey)=0$  for  $t>\tau(e)$ . Hence

 $d\left(v; \hat{e} \frac{1}{v} \sum_{i} r_{i} \otimes x_{i} \hat{e}_{v}\right) \leq \mathbb{E} \otimes \tau\left(\hat{e} \frac{1}{v}\right) = \tau\left(e \frac{1}{v}\right) = d\left(v; \left(\sum_{i} |x_{i}|^{2}\right)^{\frac{1}{2}}\right) = d(v; f), \quad \text{and analogously,}$ 

$$d\left(v; \hat{e}_v \sum_i r_i \otimes x_i \hat{e}_{\frac{1}{v}}\right), d\left(v; \hat{e}_{\frac{1}{v}} \sum_i r_i \otimes x_i \hat{e}_{\frac{1}{v}}\right) \leq d\left(v; (\sum_i |x_i|^2)^{\frac{1}{2}}\right) = d(v; f).$$

We estimate the remaining term using the noncommutative Khintchine inequality in  $L^q(M)$  (Theorem 3.1) see for example (Lindenstrauss & Tzafriri, 1979), (Theorem 1.e.13) and Lemma 3.4. The proof is complete.

We can obtain the following result of Theorem 3.6 for spaces with  $q_E < 2$ .

**3.7. Theorem**. Let  $\mathcal{M}$  be a von Neumann algebra equipped with a normal faithful trace  $\tau$  satisfying  $\tau(1) = \alpha$ . E is a symmetric quasi-Banach function space on  $(0, \alpha)$  which is p-convex for some  $0 and suppose <math>q_E < 2$ . Then for any finite sequence  $(x_i)$  in E(M) we have

$$\|\sum_{i} r_{i} \otimes x_{i}\|_{E(L^{\infty} \bar{\otimes} \mathcal{M})} \leq_{c_{E}} \inf \{\|(y_{i})\|_{E(\mathcal{M}; l_{c}^{2})} + \|(z_{i})\|_{E(\mathcal{M}; l_{r}^{2})}\}, \tag{11}$$

Where the infimum is taken over the decompositions  $x_i = y_i + z_i$  in  $E(\mathcal{M})$ . If E is a symmetric Banach function space on  $(0, \infty)$  which is separable or the dual of a separable space and satisfies  $q_E < 2$  then

$$\|\sum_{i} r_{i} \otimes x_{i}\|_{E(L^{\infty} \bar{\otimes} \mathcal{M})} \simeq_{E} \inf \left\{ \|(y_{i})\|_{E(\mathcal{M}; l_{c}^{2})} + \|(z_{i})\|_{E(\mathcal{M}; l_{r}^{2})} \right\}.$$

**Proof.** Fix  $y_i, z_i$  in  $E(\mathcal{M})$  such that  $x_i = y_i + z_i$  for  $1 \le i \le n$ . Fix v > 0 and  $q_E < q < 2$ . Define  $y = (|y_i|^2)^{\frac{1}{2}}, z = (\sum |z_i^*|^2)^{\frac{1}{2}}$  and set  $\hat{e}_v^y = 1 \otimes e_v^y$ ,  $\hat{e}_v^z = 1 \otimes e_v^z$ . Set  $f_y(s) = \mu_s(y), f_z(s) = \mu_s(z)$  and  $f(s) = \mu_s(y + z)$ . We first note that

$$\begin{split} &d(v; \sum_{i} r_{i} \otimes x_{i}) \leq d\left(\frac{v}{16}; \hat{e}_{v}^{y} \hat{e}_{v}^{z} \sum_{i} r_{i} \otimes x_{i} \hat{e}_{v}^{y} \hat{e}_{v}^{z}\right) + d\left(\frac{v}{16}; \hat{e}_{v}^{y} \hat{e}_{v}^{z} \sum_{i} r_{i} \otimes x_{i} \hat{e}_{v}^{y} (\hat{e}_{v}^{z})^{\perp}\right) \\ &+ d\left(\frac{v}{8}; \hat{e}_{v}^{y} \hat{e}_{v}^{z} \sum_{i} r_{i} \otimes x_{i} (\hat{e}_{v}^{y})^{\perp}\right) + d\left(\frac{v}{4}; \hat{e}_{v}^{y} (\hat{e}_{v}^{z})^{\perp} \sum_{i} r_{i} \otimes x_{i}\right) + d\left(\frac{v}{2}; (\hat{e}_{v}^{y})^{\perp} \sum_{i} r_{i} \otimes x_{i}\right). \end{split}$$

Reasoning as in the proof of Theorem 3.6 we obtain by Chebyshev's inequality, Kahane's inequality and the non-commutative Khintchine inequality for  $L^q(\mathcal{M})$ ,

$$d(v; \hat{e}_v^y \hat{e}_v^z (\sum_i r_i \otimes x_i) \hat{e}_v^y \hat{e}_v^z) \lesssim_q d(v; f_y \otimes \Phi_q) + d(v; f_z \otimes \Phi_q) \leq d(v; f \otimes \Phi_q).$$
 Moreover,

$$d\left(\frac{v}{16}; \hat{e}_v^{\mathcal{Y}} \hat{e}_v^{\mathcal{Z}} \sum_i r_i \otimes x_i \hat{e}_v^{\mathcal{Y}} (\hat{e}_v^{\mathcal{Z}})^{\perp}\right) \leq \mathbb{E} \otimes \tau((\hat{e}_v^{\mathcal{Z}})^{\perp}) = d(v; z) \leq d(v; f_z \otimes \Phi_q),$$

and similarly we find that

$$d\left(\frac{v}{8}; \hat{e}_{v}^{y} \hat{e}_{v}^{z} \sum_{i} r_{i} \otimes x_{i} \hat{e}_{v}^{y} (\hat{e}_{v}^{z})^{\perp}, d\left(\frac{v}{4}; \hat{e}_{v}^{y} (\hat{e}_{v}^{z})^{\perp} \sum_{i} r_{i} \otimes x_{i}\right), d\left(\frac{v}{2}; \left(\hat{e}_{v}^{y}\right)^{\perp} \sum_{i} r_{i} \otimes x_{i}\right)\right)$$

are bounded by  $d(v; f \otimes \Phi_q)$ . We conclude that there is a constant  $C_q$  depending only on q such that for all > 0,

$$d(v; \sum_i r_i \otimes x_i) \leq C_q d(v; f \otimes \Phi_q)$$
.

Since the dilation  $D_{c_q^{-1}}$  is bounded on E, we obtain by Lemma 3.3

$$\begin{split} & \| \sum_{i} r_{i} \otimes x_{i} \|_{E(L^{\infty} \overline{\otimes} M)} \lesssim_{q, E} \| f \otimes \Phi_{q} \|_{E(0, \alpha) \times (0, 1)} \lesssim_{q, E} \| f \|_{E(0, \alpha)} \\ & \lesssim_{q, E} \| (\sum_{i} |y_{i}|^{2})^{\frac{1}{2}} \|_{E(M)} + \| (\sum_{i} |z_{i}^{*}|^{2})^{\frac{1}{2}} \|_{E(M)}. \end{split}$$

By taking the infimum over all possible decompositions  $x_i = y_i + z_i$  in E(M) we obtain (11). The final statement follows from (Lemardy & Sukochev, 2008), Theorem 1.1.(1), which states that the reverse of the inequality in (11) holds if E is separable or dual of a separable space and  $q_E < \infty$ .

**3.8. Corollary**. Let  $\mathcal{M}$  be semi-finite von Neumann algebra. Suppose E is a separable symmetric Banach function space on  $(0, \infty)$  with  $p_E > 1$ . Then for any finite sequence  $(x_i)$  in  $E(\mathcal{M})$ ,

$$\inf \left\{ \|(y_i)\|_{E(\mathcal{M}; l_c^2)} + \|(z_i)\|_{E(\mathcal{M}; l_r^2)} \right\} \lesssim_E \|\sum_i r_i \otimes x_i\|_{E(L^{\infty} \bar{\otimes} \mathcal{M})}, \tag{12}$$

where the infimum is taken over all decompositions  $x_i = y_i + z_i$  in  $E(\mathcal{M})$ . If  $p_E > 2$  then

$$\max\left\{\|(x_i)\|_{E\left(\mathcal{M};l_c^2\right)},\|(x_i)\|_{E\left(\mathcal{M};l_r^2\right)}\right\}\lesssim_E\|\sum_i r_i\otimes x_i\|_{E(L^\infty\bar{\otimes}\mathcal{M})}\;.$$

In the proof of theorem 3.6 and 3.7 we can use the non-commutative Khintchine inequalities in (Junge & Xu, 2008), remark 3-5 to obtain the following version where the Rademacher sequence is replaced by a sequence of independent non-commutative variables.

**3.9. Corollary**. Let  $\mathcal{M}, N$  be a von Neumann algebras equipped with normal, faithful finite trace  $and\ \sigma$ , respectively, satisfying  $\tau(1)=\alpha$  and  $\sigma(1)=\beta$ . Suppose E is a p-convex  $0< p<\infty$  symmetric quasi-Banach function space on  $(0,\alpha\beta)$  with  $q_E<\infty$ . Let  $q>\max\{2,q_E\}$  and  $(\alpha_i)_{i\geq 1}$  be a sequence in  $L^q(N)$  which is independent with respect to  $\sigma$ , satisfying  $\sigma(\alpha_i)=0$  and is such that  $d_q=\sup_{i\geq 1}\|\alpha_i\|_q<\infty$ . Then

$$\|\sum_{i} \alpha_{i} \otimes x_{i}\|_{E\left(N\overline{\otimes}\mathcal{M}\right)} \lesssim_{E,d_{q}} \max \left\{\|(x_{i})\|_{E\left(\mathcal{M};l_{c}^{2}\right)}, \|(x_{i})\|_{E\left(\mathcal{M};l_{r}^{2}\right)}\right\},$$

for any finite sequence  $(x_i)$  in E(M). If  $q_E < 2$  then

$$\|\sum_{i} \alpha_{i} \otimes x_{i}\|_{E(N \overline{\otimes} \mathcal{M})} \lesssim_{E, d_{q}} \inf \left\{ \|(y_{k})\|_{E(\mathcal{M}; l_{c}^{2})} + \|(z_{i})\|_{E(\mathcal{M}; l_{r}^{2})} \right\},$$

Where the infimum is taken over all decompositions  $x_i = y_i + z_i$  in  $E(\mathcal{M})$ .

- **3.10. Theorem**. Suppose *E* is a symmetric quasi-Banach function on  $(0, \infty)$  which is p-convex for some 0 . Then the following are equivalent.
  - (i) The inequality (10) holds for any semi-finite von Neumann algebra  $\mathcal{M}$ ;
  - (ii)  $q_E < \infty$ .

**Proof**. Moreover, if this is the case and if E is either a separable symmetric Banach function space or the dual of separable symmetric space, then

$$\|(x_k)\|_{E(\mathcal{M};l_c^2)+E(\mathcal{M};l_r^2)} \lesssim_E \|\sum_k r_k \otimes x_k\|_{E(L^{\infty}\bar{\otimes}\mathcal{M})} \lesssim_{E(\mathcal{M};l_c^2)\cap E(\mathcal{M};l_r^2)}.$$

It remains to prove  $(i) \Rightarrow (ii)$ . Suppose  $q_E = \infty$ . It follows by (Lindenstrauss & Tzafriri, 1979), proposition 2.b.7, that for every  $\varepsilon > 0$  there exists a sequence  $(x_i)_{i=1}^n$  of mutually disjoint independent distributed in E such that  $||x_i|| = 1$  for all i and  $1 \le ||\sum_{i=1}^n x_i||_{E(0,\alpha)} < 1 + \varepsilon$ . One can show that (10) cannot hold for  $M = L^{\infty}(0,1)$ , by proceeding as in the proof of

(Junge, 2002), corollary 1. The final assertion follows by (Lemardy & Sukochev, 2008), theorem 1.1.(1).

**3.11. Theorem**. Let  $\mathcal{M}$  be a von Neumann algebra equipped with a normal, semi-finite faithful trace  $\tau$  satisfying  $\tau(1) = 1$ . Suppose E is a symmetric quasi-Banach function space on  $(0, \infty)$  which is p-convex for some 0 and <math>r - concave for some  $< \infty$ . Then

$$\mathbb{E}\|\sum_{i} r_{i} x_{i}\|_{E(\mathcal{M})} \lesssim_{E} \max \left\{\|(x_{i})\|_{E(\mathcal{M}; l_{c}^{2})}, \|(x_{i})\|_{E(\mathcal{M}; l_{r}^{2})}\right\}, \tag{13}$$

for any Rademacher sequence  $(r_i)$  and any finite sequence  $(x_i)$  in  $E(\mathcal{M})$ .

**Proof**. By Lemma 3.5, it suffices to consider the case where  $x_1, \ldots, x_n$  are self-adjoin. Fix  $q \ge 1$  such that q > r and define  $f: (0, \alpha) \to [0, \infty]$  by  $f(s) = \mu_s \left( (\sum_i x_i^2)^{\frac{1}{2}} \right)$  and  $\Phi_q = \frac{1}{q}$ . Since E is q - concave for any  $q \ge r$ 

$$\mathbb{E}\|\sum_{i} r_i x_i\|_{E(M)} \leq \left(\|\mu(\sum_{i} r_i x_i)\|_{E(M)}^q\right)^{\frac{1}{q}} \leq C_q(E) \left\|\left(\mathbb{E}\mu(\sum_{i} r_i x_i)^q\right)^{\frac{1}{q}}\right\|_{E},$$

Where  $C_q$  (E) is q-concavity constant of E. Fix v>0 and set  $e_v=e^{\left(\sum_i|x_i|^2\right)^{\frac{1}{2}}}[0,v]$ . Recall that  $\mu_t(a+b)\leq \mu_{\frac{t}{2}}(a)+\mu_{\frac{t}{2}}(b)$  and  $d(v;a+b)\leq d\left(\frac{v}{2};a\right)+d\left(\frac{v}{2};b\right)$  for all  $a,b\in S(t)$ . Hence, by the triangle inequality in  $L^q(\Omega)$ , we have for any v>0

$$d\left(v; \left(\mathbb{E}(|\mu(\sum_{i} r_{i} x_{i})|^{q})^{\frac{1}{q}}\right)\right)$$

$$\leq d\left(\frac{v}{4}; \left(\mathbb{E}\left|D_{\frac{1}{4}} \mu(e^{v} \sum_{i} r_{i} x_{i} e_{v})\right|^{q}\right)^{\frac{1}{q}}\right) + d\left(\frac{v}{4}; \left(\mathbb{E}\left|D_{\frac{1}{4}} \mu(e^{\perp} \sum_{i} r_{i} x_{i} e_{v})\right|^{q}\right)^{\frac{1}{q}}\right).$$

$$+d\left(\frac{v}{4}; \left(\mathbb{E}\left|D_{\frac{1}{4}} \mu(e_{v} \sum_{i} r_{i} x_{i} e^{\perp})\right|^{q}\right)^{\frac{1}{q}}\right) + d\left(\frac{v}{4}; \left(\mathbb{E}\left|D_{\frac{1}{4}} \mu(e^{\perp} \sum_{i} r_{i} x_{i} e^{\perp})\right|^{q}\right)^{\frac{1}{q}}\right).$$

$$(14)$$

Recall that if e is a finite trace projection we have  $\mu_t(ye) = \mu_t(ey) = 0$  for all  $t \ge \tau(e)$ . Therefore,

$$d\left(\frac{v}{4}; \left(\mathbb{E}\left|D_{\frac{1}{4}}\mu(e_v^{\perp}\sum_i r_i x_i e_v)\right|^q\right)^{\frac{1}{q}}\right) \leq 4d\left(v; \left(\sum_i |x_i|^2\right)^{\frac{1}{2}}\right) = 4d(v; f),$$

and analogously.

$$d\left(\frac{v}{4}; \left(\mathbb{E}\left|D_{\frac{1}{4}}\mu(e_v\sum_i r_ix_ie_v^{\perp})\right|^q\right)^{\frac{1}{q}}\right), d\left(\left(\frac{v}{4}; \mathbb{E}\left|D_{\frac{1}{4}}\mu(e_v^{\perp}\sum_i r_ix_ie_v^{\perp})\right|^q\right)^{\frac{1}{4}}\right) \leq 4d(v; f).$$

We estimate the final term in (12) using the non-commutative Khintchine inequality in  $L^q(\mathcal{M})$  (Theorem 3.1) and Chebyshev's inequality (Lemma 3.5). We obtain

$$\begin{split} v^{q} d \left( v; \left( \mathbb{E} \left( D_{\frac{1}{4}} \mu \sum_{i} r_{i} e_{v} x_{i} e_{v} \right)^{q} \right)^{\frac{1}{q}} \right) &= v^{q} \lambda \left( \left( t \in (0, \infty) : \mathbb{E} \left( \mu_{\frac{1}{4}} \sum_{i} r_{i} e_{v} x_{i} e_{v} \right)^{q} \right) > v^{q} \right) \\ &\leq \int_{0}^{\infty} \mathbb{E} \left( \mu_{\frac{1}{4}} (\sum_{i} r_{i} e_{v} x_{i} e_{v})^{q} \right) dt = \mathbb{E} \left\| D_{\frac{1}{4}} \mu (\sum_{i} r_{i} e_{v} x_{i} e_{v}) \right\|_{L^{q}(0,\infty)}^{q} \\ &= 4^{q} \mathbb{E} \| \sum_{i} r_{i} e_{v} x_{i} e_{v} \|_{L^{q}(\mathbb{M})}^{q} \leq 4^{q} K_{q,1}^{q} \left( \mathbb{E} \| \sum_{i} r_{i} e_{v} x_{i} e_{v} \|_{L^{q}(\mathbb{M})}^{q} \right)^{q} \\ &\leq 4^{q} K_{q,1}^{q} B_{q}^{q} \left\| (\sum_{i} |e_{v} x_{i} e_{v}|^{2})^{\frac{1}{2}} \right\|_{L^{q}(\mathbb{M})}^{q} \leq 4^{q} K_{q,1}^{q} B_{q}^{q} \int_{\{f \leq v\}} f(s)^{q} ds, \end{split}$$

where the last inequality follows by (10) and  $B_q$  and  $K_{q,1}$  are the constants in the commutative Khintchine inequality and Kahane's inequality (Lindenstrauss & Tzafriri, 1979; theorem 1.e.13). By Lemma 3.4 we have  $v^{-q} \int_{\{f \leq v\}} f(s)^q ds + d(v;f) = d(v;f \otimes \Phi_q)$  for all v > 0 and hence there is a constant  $C_q > 0$  such that for any > 0,

$$d\left(v; (\mathbb{E}|\mu_t(\sum_i r_i x_i)|^q)^{\frac{1}{q}}\right) \leq C_q d\left(\frac{v}{4}; f \otimes \Phi_q\right).$$

Since the dilation operator  $D_{C_q^{-1}}$  is bounded on E we obtain

$$\left\| \left( \mathbb{E} |\mu_t(\sum_i r_i x_i)|^q \right)^{\frac{1}{q}} \right\|_E \lesssim_{q,E} \left\| f \otimes \Phi_q \right\|_E.$$

Since the r-concavity of E implies that  $q_E \le r < q < \infty$ , an application of Lemma 3.3 completes the proof.

**3.12. Corollary**. Let  $\mathcal{M}$  be a semi-finite von Neumann algebra. Suppose E is a separable symmetric Banach function space on  $(0, \infty)$  which is p-convex for some p > 1. Then, for any finite sequence  $(x_i)$  in  $(\mathcal{M})$ ,

$$\inf \left\{ \|(y_i)\|_{E(\mathcal{M}; l_c^2)} + \|(z_i)\|_{E(\mathcal{M}; l_r^2)} \right\} \lesssim_E \mathbb{E} \|\sum_i r_i x_i\|_{E(\mathcal{M})}, \tag{15}$$

where the infimum is taken over all decompositions  $x_i = y_i + z_i$  in  $E(\mathcal{M})$ .

Now we obtain the following characterization of q-concave spaces.

- **3.13. Theorem**. Let *E* be a separable quasi-Banach function space on  $(0, \infty)$  which is p-convex for some 0 . Then the following are equivalent.
  - (i) The inequality (13) holds for any semi-finite von Neumann algebra  $\mathcal{M}$ ;
  - (ii) E is q-concave for some  $q < \infty$ .

Moreover, if his is the case and p > 1 we have

$$\|(x_i)\|_{E(\mathcal{M};l_c^2)+E(\mathcal{M};l_r^2)} \lesssim_E \mathbb{E}\|r_i x_i\|_{E(\mathcal{M})} \lesssim_E \|(x_i)\|_{E(\mathcal{M};l_c^2)\cap E(\mathcal{M};l_r^2)},$$

For any finite sequence  $(x_i)$  in  $E(\mathcal{M})$ .

**3.14. Corollary**. Let E be a symmetric Banach function space on  $(o, \alpha)$  and suppose E is 2-convex and q-concave for some  $q < \infty$ . Then, for any semi-finite von Neumann algebra equipped with a normal, semi-finite, faithful trace  $\tau$  satisfying  $\tau(1) = \alpha$ , any Rademacher sequence  $(r_i)$  and any finite sequence  $(x_i)$  in  $E(\mathcal{M})$  we have

$$\mathbb{E}\|\sum_{i} r_{i} x_{i}\|_{E(\mathcal{M})} \simeq_{E} \|(x_{i})\|_{E(\mathcal{M}; l_{c}^{2}) \cap E(\mathcal{M}; l_{r}^{2})} \simeq_{E} \|\sum_{i} r_{i} \otimes x_{i}\|_{E(L^{\infty} \overline{\otimes} \mathcal{M})}.$$
(16)

**Proof.** Since *E* is q-concave, it has order continuous norm and  $q_E \le q < \infty$ . Hence, by theorem 3.6 and 3.11, it remains to show that

$$\|(x_i)\|_{E(\mathcal{M}; l_r^2) \cap E(\mathcal{M}; l_r^2)} \lesssim_E \mathbb{E} \|\sum_i r_i x_i\|_{E(\mathcal{M})}; \tag{17}$$

$$\|(x_i)\|_{E(\mathcal{M};l_c^2)\cap E(\mathcal{M};l_r^2)} \lesssim_E \|\sum_i r_i \otimes x_i\|_{E(L^\infty \bar{\otimes} \mathcal{M})}.$$

$$\tag{18}$$

To prove (17) recall that since E has Fatou norm and is 2-convex,  $E(\mathcal{M})$  is 2-convex as well. Hence

$$\begin{split} & \left\| (\sum_{i} |x_{i}|^{2})^{\frac{1}{2}} \right\|_{E(\mathcal{M})} = \left\| (\sum_{i} |r_{i}x_{i}|^{2})^{\frac{1}{2}} \right\|_{E(\mathcal{M})} = \left\| (\mathbb{E}|\sum_{i} r_{i}x_{i}|^{2})^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \\ \lesssim_{E} \left( \mathbb{E}\|\sum_{i} r_{i}x_{i}\|_{E(\mathcal{M})}^{2} \right)^{\frac{1}{2}} \lesssim \mathbb{E}\|\sum_{i} r_{i}x_{i}\|_{E(\mathcal{M})} , \end{split}$$

where in final inequality we apply Kahane,s inequality. By applying this to  $(x_i^*)$  we see that (17) holds.

Note that since  $L^p(\Omega; L^p(\mathcal{M})) = L^p(L^\infty(\Omega) \overline{\otimes} \mathcal{M})$  holds isometrically for  $2 \leq p < \infty$ , the above shows that, for any finite sequence  $(x_i)_{i=1}^n$  in  $L^p(\mathcal{M})$ ,

$$\|(x_i)\|_{L^p(\mathcal{M};l_c^2)} \le \|\sum_i r_i \otimes x_i\|_{L^p(L^\infty \bar{\otimes} \mathcal{M})}. \tag{19}$$

Since E is 2-convex and q-concave, E is an interpolation space for the couple  $(L^2, L^p)$  by Theorem 2.5. Hence, by the discussion following (7),  $Rad_n(E)$  is a complemented subspace of  $E(L^\infty \overline{\otimes} \mathcal{M})$  and by theorem 2.6, we obtain

$$\|(x_i)\|_{E(\mathcal{M};l_c^2)} \lesssim_E \|\sum_i r_i \otimes x_i\|_{E(L^{\infty} \overline{\otimes} \mathcal{M})}$$

By interpolation from (19). By applying this to  $(x_i^*)_{i=1}^n$  we see that (18) holds.

**3.15. Proposition**. Let *E* be a fully symmetric quasi-Banach function space on  $(0, \alpha)$  with Fatou quasi-norm and  $1 < p_E \le q_E < \infty$ . For every  $k \ge 1$ , let  $\varepsilon_k \in \mathcal{M}_{k-1}$  and suppose

that  $\|\xi_k\| \le 1$  and  $\xi_k$  commutes with  $\mathcal{M}_k$ . Then , for any martingale difference sequence  $(y_k)_{k=1}^{\infty}$  with respect to  $(M_k)_{k=1}^{\infty}$  in  $E(\mathcal{M})$  and any  $n \ge 1$  we have

$$\|\sum_{k=1}^n \xi_k y_k\|_{E(\mathcal{M})} \lesssim_E \|\sum_{k=1}^n y_k\|_{E(\mathcal{M})}$$
.

In particular, taking  $\xi_k \in \{-1,1\}$  yields the well known fact that non-commutative martingale difference sequences are unconditional in  $(\mathcal{M})$ .

**3.16. Lemma.** Let E be a symmetric p-convex  $(0 quasi-Banach function space on <math>(0,\alpha)$  with  $1 < p_E \le q_E < \infty$  and suppose  $\mathcal M$  is a von Neumann algebra equipped with a normal, semi-finite, faithful trace  $\tau$  satisfying  $\tau(1) = \alpha$ . Let  $(\mathcal M_k)_{k=1}^\infty$  be an increasing sequence of von Neumann sub algebra such that  $\tau|_{\mathcal M_k}$  is semi-finite. Then we have the equivalences

$$\mathbb{E}\|\sum_{k=1}^n r_k x_k\|_{E(\mathcal{M})} \simeq_E \|\sum_{k=1}^n x_k\|_{E(\mathcal{M})} \simeq_E \|\sum_{k=1}^n r_k \otimes x_k\|_{E(L^{\infty} \bar{\otimes} \mathcal{M})}, (20)$$

For any Rademacher sequence  $(r_k)$  and any martingale difference sequence  $(x_k)_{k=1}^n$ 

**Proof**. The first equivalence in (20) follows directly from the un conditionality of non-commutative martingale difference sequences in  $E(\mathcal{M})$ . For the second equivalence, observe that  $(y_k) = (r_k \otimes x_k)$  is a martingale difference sequence with respect to the filtration  $(L^{\infty} \overline{\otimes} \mathcal{M}_k)$ . By applying proposition 3.15 with  $\xi_k = r_k \otimes 1$ 

$$\|\sum_{k=1}^n x_k\|_{E(\mathcal{M})} = \|\sum_{k=1}^n (r_k \otimes 1)(r_k \otimes x_k)\|_{E(L^{\infty} \bar{\otimes} \mathcal{M})} \lesssim_E \|\sum_{k=1}^n r_k \otimes x_k\|_{E(L^{\infty} \bar{\otimes} \mathcal{M})}$$

The reverse inequality follows similarly from proposition 3.15 with  $(y_k) = (1 \otimes x_k)$ .

**3.17. Proposition**. Let E be a symmetric Banach function space on  $(0, \infty)$  with  $1 < p_E \le q_E < \infty$  and suppose that E is either separable or is the dual of a separable symmetric space. Suppose  $\mathcal{M}$  is a von Neumann algebra equipped with a normal semi finite, faithful trace  $\tau$ , let  $(\mathcal{M}_k)_{k=1}^{\infty}$ , be an increasing sequence of von Neumann sub algebras such that  $\tau|_{\mathcal{M}_k}$  is semi-finite. Then for any finite martingale difference sequence  $(x_k)$  in  $E(\mathcal{M})$  we have

$$\|(x_k)\|_{H_c^E + H_r^E} \lesssim_E \|\sum_k x_k\|_{E(\mathcal{M})} \lesssim_E \|(x_k)\|_{H_c^E \cap H_r^E}.$$

Suppose that E is separable . If  $p_E > 1$  and either  $q_E < 2$  or E is 2-concave, then  $\|\sum_k x_k\|_{E(M)} \simeq_E \|(x_k)\|_{H^F_c + H^F_c}$ .

On the other hand, if either E is 2-convex and  $q_E < \infty$  or  $2 < p_E \le q_E < \infty$  then  $\|\sum_k x_k\|_{E(M)} \simeq_E \|(x_k)\|_{H_c^E + H_r^E}$ .

**3.18. Proposition**. Let  $\mathcal{M}$  be a semi-finite von Neumann algebra equipped with a normal semi-finite, faithful trace  $\tau$  and  $\widetilde{\mathcal{M}}$  a von Neumann sub algebra of  $\mathcal{M}$  such that  $\tau|_{\widetilde{\mathcal{M}}}$  is again semi-finite. Let  $\xi$  be the conditional expectation with respect to  $\widetilde{\mathcal{M}}$ . Suppose E is a 2-convex symmetric Banach function space on  $(0, \infty)$  with 2-convexity constant equal to 1 and suppose  $E_{(2)}$  is fully symmetric. Then  $\|.\|_{E(\mathcal{M};\xi)}$  define a norm on  $E(\mathcal{M})$ .

**Proof.** It clear that  $\|.\|_{E(\mathcal{M};\xi)}$  is positive definite and homogeneous. It remains to show the triangle inequality. Let  $x,y\in E(\mathcal{M})$  and fix  $\alpha>0$ . Using that  $|\alpha x-\alpha^{-1}y|^2\geq 0$  it follows that

 $|x+y|^2 \le (1+\alpha^2)|x|^2 + |(1+\alpha^{-1})||y|^2$ . Hence, as E is 2-convex with 2-convexity constant equal to 1,

$$\|\varepsilon|x+y|^2\|_{E_{(2)}(\mathcal{M})} \leq (1+\alpha^2)\|\varepsilon|x|^2\|_{E_{(2)}(\mathcal{M})} + (1+\alpha^{-2})\|\varepsilon|y|^2\|_{E_{(2)}(\mathcal{M})} \; .$$

Taking the infimum over all  $\alpha > 0$  gives

$$\|\varepsilon|x+y|^2\|_{E_{(2)}} \le \left(\|\varepsilon|x|^2\|_{E_{(2)}}^{\frac{1}{2}} + \|\varepsilon|y|^2\|_{E_{(2)}}^{\frac{1}{2}}\right)^2$$
, which yields the result.

#### IV. Improved Non-Commutative Rosenthal's Inequality

We derive a generalization of Rosenthal's theorem to non-commutative symmetric spaces. Recall the following notion of conditional independence, which was introduced in

(Junge & Xu, 2008). Given a sequence  $(N_k)$  of conditional independence, which von Neumann algebra  $\mathcal{M}$ , we let  $W^*((N_k)_k)$  denote the von Neumann subalgebra generated by  $(N_k)$ .

**4.1. Definition**. Let  $\mathcal{M}$  be a von Neumann algebra equipped with a normal, semi-finite, faithful trace  $\tau$ . Let  $(N_k)$  be a sequence of von Neumann sub algebra of  $\mathcal{M}$  and N a common von Neumann subalgebra of the  $(N_k)$  such that  $\tau|_N$  is semi-finite. We call  $(N_k)$  independent with respect to  $\xi_N$  for every k we have  $\xi_N(xy) = \xi_N(x)\xi_N(y)$  for  $x \in N_k$  and  $y \in \mathcal{W}^*\left((N_j)_{i \neq k}\right)$ .

If a sequence  $(N_k)$  is independent with respect to  $\xi_N$  and  $x_k \in N_k$  satisfy  $\xi_N(a_k) = 0$ , then  $(x_k)$  is a martingale difference sequence with respect to the filtration  $(W^*(N_1, ..., N_k))_{k=1}^{\infty}$ . Also, if we let  $\xi_k$  denote the conditional expectation with respect to  $W^*(N_1, ..., N_k)$ , then by (5) one obtains  $\xi_{k-1}(x_k) = \xi_N(x_k) = 0$ .

**4.2. Lemma.** Let  $(\mathcal{M}, \tau)$  be a von Neumann algebra equipped with normal, semi-finite, faithful trace  $\tau$  satisfying  $\tau(1) = \alpha$  and let E be a p-convex  $(0 quasi-Banach function space on <math>(0, \alpha)$  which is an interpolation space for the couple  $(L^1, L^\infty)$ . Let  $(N_k)$  be a sequence of von Neumann subalgebra of the  $N_k$  such that  $\tau|_N$  is semi-finite. Suppose  $(N_k)$  is independent with respect to  $\mathcal{E}_N$ . If  $x_k \in E(N_k)$  satisfying  $\mathcal{E}_N(x_k) = 0$ , then for any Rademacher sequence  $(r_k)$ ,

$$\|\sum_{k=1}^n x_k\|_{E(\mathcal{M})} \simeq_E E \|\sum_{k=1}^n r_k x_k\|_{E(N)}$$
.

With constant depending only on E. If E is moreover q-concave for some  $q < \infty$ , then

$$\|\sum_{k=1}^{n} x_{k}\|_{E(\mathcal{M})} \lesssim_{E} \max \left\{ \left\| \left( \sum_{k} |x_{k}|^{2} \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})}, \left\| \left( \sum_{k} |x_{k}^{*}|^{2} \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \right\}.$$

**Proof.** It suffices to show that for any sequence of signs  $(\mathcal{E}_k)_{k=1}^n \subset \{-1,1\}^n$ .

 $\|\sum_{k=1}^n \mathcal{E}_k x_k\|_{E(\mathcal{M})} \lesssim_E \|\sum_{k=1}^n x_k\|_{E(\mathcal{M})} \text{ . Define } N_+ = W^*(\{N_k : \mathcal{E}_k = 1\}) \text{ and } N_- = W^*(\{N_k : \mathcal{E}_k = -1\}). \text{ Note that if } \mathcal{E}_i = -1, \text{ then by independent and (5) it readily follows that } \mathcal{E}_{N_+}(x_i) = \mathcal{E}_N(x_i) = 0. \text{ Hence }, \mathcal{E}_{N_+}(\sum_{k=1}^n x_k) = \sum_{\mathcal{E}_{k=1}} x_k + \sum_{\mathcal{E}_k = -1} \mathcal{E}_{N_+}(x_k) = \sum_{\mathcal{E}_k = 1} x_k \text{ and analogously }, \mathcal{E}_{N_-}(\sum_{k=1}^n x_k) = \sum_{\mathcal{E}_k = -1} x_k \text{ . Since conditional expectations are bounded on } \mathcal{E}(\mathcal{M}) \text{ by a constant } c_E \text{ depending only on } E \text{ we obtain } \mathcal{E}_N(x_i) = \mathcal{E}_N$ 

$$\begin{aligned} \|\sum_{k=1}^{n} \mathcal{E}_{k} x_{k}\|_{E(\mathcal{M})} &= \|\sum_{\mathcal{E}_{k}=1} x_{k} - \sum_{\mathcal{E}_{k}=-1} x_{k}\|_{E(\mathcal{M})} = \|(\mathcal{E}_{N_{+}} - \mathcal{E}_{N_{-}})(\sum_{k=1}^{n} x_{k})\|_{E(\mathcal{M})} \lesssim_{E} \|\sum_{k=1}^{n} x_{k}\|_{E(\mathcal{M})}. \end{aligned}$$

The final statement follows from theorem 3.11.

- **4.3. Remark**. Note that  $2 < p_E \le q_E < \infty$  then E is an interpolation space for the couple  $(L^2, L^p)$ , for any  $p > q_E$ . However, there are such spaces which are not q-concave for any  $q < \infty$ . Indeed, recall the Lorentz spaces  $L^{p,q}$  on  $(0,\infty)$  (see [18], section 4.4). Then the space  $E = L^{3,\infty}$  has  $p_E = q_E = 3$ , but is  $\infty concave$ .
- **4.4. Theorem.** (non-commutative Rosenthal theorem ). Let  $\mathcal{M}$  be a semi-finite, faithful trace  $\tau$ . Suppose E is a symmetric Banach function space on  $(0, \infty)$  satisfying either of the following conditions
- (i) E is an interpolation space for the couple  $(L^2, L^p)$  for some  $2 \le p < \infty$  and E is q-concave for some  $q < \infty$ ;
  - (ii) 2 <  $p_E$  ≤  $q_E$  < ∞.

Let  $(N_k)$  be a sequence of von Neumann subalgebra of  $\mathcal{M}$  and N a common von Neumann subalgebra of the  $(N_k)$  such that  $\tau|_N$  is semi-finite. Suppose  $(N_k)$  is independent with respect to  $\mathcal{E} := \mathcal{E}_N$ . Let  $\mathcal{E}(x_k) = 0$  for all k. Then, for any n,

$$\|\sum_{k=1}^{n} x_{k}\|_{E(\mathcal{M})} \simeq_{F} \max \left\{ \|diag(x_{k})_{k=1}^{n}\|_{E(\mathcal{M}_{n}(\mathcal{M}))}, \|(x_{k})_{k=1}^{n}\|_{E(\mathcal{M},\mathcal{E};l_{c}^{2})}, \|(x_{k})_{k=1}^{n}\|_{E(\mathcal{M},\mathcal{E};l_{r}^{2})} \right\}. \tag{21}$$

**Proof.** Assume that  $x_k$  are bounded. Note that  $\mathcal{E}$  is bounded on  $E_{(2)}(\mathcal{M})$  under both condition (i) and (ii) by proposition 2.6. We first prove that the maximum on the right hand

side is an interpolation space for the couple  $(L^2, L^p)$  for some  $p < \infty$  under both condition (i) and (ii), it follows from the discussion following (7) that the n-th Rademacher subspace  $Rad_n(E)$  is  $c_E - complemented$  in  $E(L^\infty \overline{\otimes} \mathcal{M})$ , for some constant  $c_E > 0$  independent of n. Recall that  $L^q(\mathcal{M})$  has cotype q see (Pisier & Xu, 2003) i.e.

$$\|diag(x_k)_{k=1}^n\|_{L^q(N_n(\mathcal{M}))} = \left(\sum_{k=1}^n \|x_k\|_{L^q(\mathcal{M})}^q\right)^{\frac{1}{q}} \leq \|\sum_{k=1}^n r_k \otimes x_k\|_{L^q(L^\infty \bar{\otimes} \mathcal{M})}.$$

By interpolation of this estimate for q = 2 and q = p we obtain

$$||diag(x_k)_{k=1}^n||_{E(N_n(\mathcal{M}))} \lesssim_E ||\sum_{k=1}^n r_k \otimes x_k||_{E(L^{\infty} \overline{\otimes} \mathcal{M})},$$

and by Lemma 3.16

$$\|\sum r_k \otimes x_k\|_{E(L^{\infty} \bar{\otimes} \mathcal{M})} \simeq_E \|\sum_k x_k\|_{E(\mathcal{M})}$$
.

Since the  $(N_k)$  are independent and we have  $\mathcal{E}(x_k) = 0$  for all k (so  $\mathcal{E}(x_k^*x_j) = \mathcal{E}(x_k^*)\mathcal{E}(x_j) = 0$  if  $j \neq k$ ) we have by boundedness of  $\mathcal{E}$  in  $E_{(2)}(\mathcal{M})$ ,

$$\left\|\sum_{k} \mathcal{E}(x_k^* x_k)^{\frac{1}{2}}\right\|_{E(\mathcal{M})} = \left\|\sum_{k} \mathcal{E}(x_k^* x_k)\right\|_{E_{(2)}(\mathcal{M})}^{\frac{1}{2}} =$$

$$\|\mathcal{E}(\sum_k x_k^*)(\sum_k x_k)\|_{E_{(2)}(\mathcal{M})}^{\frac{1}{2}} \lesssim_E \|\sum_k x_k\|_{E(\mathcal{M})},$$

and by applying this to the sequence  $(x_k^*)$  we get

$$\left\| \left( \sum_{k} \mathcal{E}(x_k x_k^*) \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \lesssim_E \left\| \sum_{k} x_k \right\|_{E(\mathcal{M})}.$$

We now prove the reverse inequality in (21). By Lemma 4.2 (case (i)) or proposition 3.17 (case (ii)), respectively we have

$$\|\sum_{k} x_{k}\|_{E(\mathcal{M})} \lesssim_{E} \max \left\{ \left\| \left(\sum_{k} x_{k}^{*} x_{k}\right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})}, \left\|\sum_{k} (x_{k} x_{k}^{*})^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \right\}. (22)$$

By the quasi-triangle inequality in  $E_{(2)}(\mathcal{M})$  we have

$$\left\| \left( \sum_{k} x_{k}^{*} x_{k} \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \lesssim_{E} \left( \left\| \sum_{k} x_{k}^{*} x_{k} - \mathcal{E}(x_{k}^{*} x_{k}) \right\|_{E_{(2)}(\mathcal{M})} + \left\| \sum_{k} (x_{k}^{*} x_{k}) \right\|_{E_{2}(\mathcal{M})} \right)^{\frac{1}{2}}.$$

Notice that  $(|x_k|^2 - \mathcal{E}(|x_k|^2))_{k \geq 1}$  is independent with respect to  $\mathcal{E}$ , self-adjoint and, moreover,  $\mathcal{E}(|x_k|^2 - \mathcal{E}(|x_k|^2)) = 0$  for all k. Hence it is a martingale difference sequence and we obtain again by Lemma 4.2 (case (i)) or proposition 3.17 case (ii), since in this case  $(1 < p_{E_{(2)}}, q_{E_{(2)}} < \infty)$ , respectively,

$$\begin{split} \| \sum_{k} x_{k}^{*} x_{k} - \mathcal{E}(x_{k}^{*} x_{k}) \|_{E_{(2)}((\mathcal{M}))} & \lesssim_{E} \left\| \left( \sum_{k} (x_{k}^{*} x_{k} - \mathcal{E}(x_{k}^{*} x_{k}))^{2} \right)^{\frac{1}{2}} \right\|_{E_{(2)}((\mathcal{M}))} \\ & \lesssim_{E} \left\| (|x_{k}|^{4})^{\frac{1}{2}} \right\|_{E_{(2)}(\mathcal{M})} + \left\| \left( \sum_{k} \left( \mathcal{E}(|x_{2}|^{2}) \right)^{2} \right)^{\frac{1}{2}} \right\|_{E_{(2)}(\mathcal{M})}, \end{split}$$

where in the final inequality we use the quasi-triangle inequality in  $E_{(2)}(\mathcal{M}; l_c^2)$ . Let  $x = col(|x_k|)$  and  $y = diag(|x_k|)$ . Since  $\mu(xy) \prec \mu(x)\mu(y)$ , we obtain

$$\begin{split} \left\| \left( \sum_{k} |x_{k}|^{4} \right)^{\frac{1}{2}} \right\|_{E_{(2)}(\mathcal{M})} &= \left\| \left( x^{*}y^{*}yx \right)^{\frac{1}{2}} \right\|_{E_{(2)}(\mathcal{M}_{n}(\mathcal{M}))} = \left\| yx \right\|_{E_{(2)}(\mathcal{M}_{n}(\mathcal{M}))} \\ &\lesssim_{E} \left\| \mu(x)\mu(y) \right\|_{E_{(2)}} &= \left\| \mu(x)^{\frac{1}{2}}\mu(y)^{\frac{1}{2}} \right\|_{E}^{2} \left\| y \right\|_{E(\mathcal{M}_{n}(\mathcal{M}))} \left\| x \right\|_{E(\mathcal{M}_{n}(\mathcal{M}))} \\ &= \left\| diag(x_{k}) \right\|_{E(\mathcal{M}_{n}(\mathcal{M}))} \left\| \left( \sum_{k} |x_{k}|^{2} \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})}, \end{split}$$

where in the final inequality we use the  $H\ddot{o}lder - type$  inequality in (Lindenstrauss & Tzafriri, 1979), proposition 1.d.2 (i).

Let  $\mathcal{E}_n$  be the conditional expectation in  $E(\mathcal{M}_n(\mathcal{M}))$  with respect to the von Neumann subalgebra  $M_n(N)$ , i.e.  $\mathcal{E}_n = \mathcal{E} \otimes 1_{\mathcal{M}_n(c)}$ . Writing  $z = col(|x_k|^2)$ , we have  $\mathcal{E}_n(z) = col(|x_k|^2)$  $col(\mathcal{E}|x_k|^2)$  and so by boundedness of  $\mathcal{E}_n$  in  $E_{(2)}(\mathcal{M}_n(\mathcal{M}))$ ,

$$\begin{split} & \left\| (\sum_{k} (\mathcal{E}|x_{k}|^{2})^{2})^{\frac{1}{2}} \right\|_{E_{(2)}(\mathcal{M})} = \left\| \left( \left( \mathcal{E}_{n}(z) \right)^{*} \mathcal{E}_{n}(z) \right)^{\frac{1}{2}} \right\|_{E_{(2)}(\mathcal{M}_{n}(\mathcal{M}))} \\ & = \left\| \mathcal{E}_{n}(z) \right\|_{E_{(2)}(\mathcal{M}_{n}(\mathcal{M}))} \lesssim_{E} \left\| z \right\|_{E_{(2)}(\mathcal{M}_{n}(\mathcal{M}))} = \left\| (\sum_{k} |x_{k}|^{4})^{\frac{1}{2}} \right\|_{E_{(2)}(\mathcal{M})}. \end{split}$$

Putting the estimates together we arrive at

$$\left\| \left( \sum_{k} |x_{k}|^{2} \right)^{\frac{1}{2}} \right\|_{E} \lesssim_{E} \left( \left\| diag(x_{k}) \right\|_{E\left(\mathcal{M}_{n}(\mathcal{M})\right)} \left\| \left( \sum_{k} |x_{k}|^{2} \right)^{\frac{1}{2}} \right\|_{E} + \left\| \left( \sum_{k} \mathcal{E}(|x_{k}|^{2}) \right)^{\frac{1}{2}} \right\|_{E}^{2} \right)^{\frac{1}{2}}.$$

In the other words, if we set  $= \left\| \left( \sum_{k} |x_k|^2 \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})}$ ,  $b = \left\| diag(x_k) \right\|_{E(\mathcal{M}_n(\mathcal{M}))}$  and c =

 $\left\| \left( \sum_{k} \mathcal{E} |x_{k}|^{2} \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})}$ , we have  $a^{2} \lesssim_{E} ab + c^{2}$ . Solving this quadratic equation we obtain  $a \lesssim_E max\{b,c\}, \text{ or },$ 

$$\left\| \left( \sum_{k} |x_k|^2 \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \lesssim_E \max \left\{ \left\| diag(x_k) \right\|_{E\left(\mathcal{M}_n(\mathcal{M})\right)}, \left\| \left( \sum_{k} \mathcal{E}(|x_k|^2) \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \right\}.$$

Applying this to the sequence  $(x_k^*)$  gives

$$\left\| \left( \sum_{k} |x_{k}^{*}|^{2} \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \lesssim_{E} \max \left\{ \left\| diag(x_{k}) \right\|_{E(\mathcal{M}_{n}(\mathcal{M}))}, \left\| \left( \sum_{k} \mathcal{E}(|x_{k}^{*}|^{2}) \right)^{\frac{1}{2}} \right\|_{E(\mathcal{M})} \right\}.$$

The result follows by (22). The final assertion follows by a straightforward.

- **4.5. Remark.** Theorem 4.4 generalizes the Rosenthal inequalities for commutative Banach function spaces (Takesaki, 1972; remark 7) and for non-commutative  $L^p$  – spaces (Pisier & Xu, 2003; Theorem 2.1). These two results can be recovered by taking  $\mathcal{M} =$  $L^{\infty}(\Omega)$ , N=C in the first case and by setting  $E=L^p$  in the second. Note, however, that the proof in (Pisier & Xu, 2003) is also valid for Haagerup  $L^p$  – spaces (i.e., if  $\tau$  is not a trace).
- **4.6. Corollary**. Let  $q \le p < \infty$ , and q > 2. Let  $\mathcal{M}$  be a von Neumann algebra equipped with normal, faithful state  $\Phi$ . Suppose  $(N_k)$  is a sequence of von Neumann sub algebras of  ${\mathcal M}$  and N is a common von Neumann sub algebra of  $N_k$  is independent with respect to  ${\mathcal E}=$  $\mathcal{E}_N$ . Let  $x_k \in L^p(N_k)$  be such that  $\hat{\mathcal{E}}(x_k) = 0$  for all k then,

$$\|\sum_{k} x_{k}\|_{L^{p}(\mathcal{M})} \simeq_{p} \max \left\{ \|(x_{k})\|_{l^{p}(L^{p}(\mathcal{M}))}, \|(x_{k})\|_{L^{p}(\mathcal{M}, \hat{\mathcal{E}}; l_{c}^{q})}, \|(x_{k})\|_{L^{p}(\mathcal{M}, \hat{\mathcal{E}}; l_{r}^{q})} \right\}.$$

**Proof.** The case where p = q is trivial, suppose q . In (Haagerup, Junge, & Xu,2010), Lemma 6.14, it is shown that the von Neumann sub algebra  $R(N_k)$  are independent with respect to  $\mathcal{E}_{R(N)} = \hat{\mathcal{E}}_N$  whenever  $(N_k)$  is independent with respect to  $\mathcal{E}_N$ . By Theorem 4.4 we obtain the Rosenthal inequalities in  $L^{p,\infty}(R(\mathcal{M}))$  for bounded elements. In (Junge & Xu, 2003), Lemma 1.1, it is shown that set  $\mathcal{M}D^{\frac{1}{p}}$  dense in  $L^p(\mathcal{M}, \Phi)$ , so it suffices to show that the Rosenthal inequalities hold for the sequence  $(x_k D^{\frac{1}{p}})$ , where  $x_k \in N_k$ . Set  $e_m = e^D[0, m]$ , then  $x_k D^{\frac{1}{\nu}} e_m$  is bounded linear operator in  $L^{p,\infty}(R(N_k),\tau)$ . By the above we have

 $\left\| \sum_{k=1}^n x_k D^{\frac{1}{\nu}} e_m \right\|_{D,\infty} \simeq_p \max \left\{ \left\| \operatorname{diag} \left( x_k D^{\frac{1}{\nu}} e_m \right) \right\|_{L^{p,\infty} \left( \mathcal{M}_n(R(\mathcal{M})) \right)}, \left\| \left( x_k D^{\frac{1}{\nu}} e_m \right) \right\|_{L^{p,\infty} \left( R(\mathcal{M}), \mathcal{E}; l_r^q \right)}, \left\| \left( x_k D^{\frac{1}{\nu}} e_m \right) \right\|_{L^{p,\infty} \left( R(\mathcal{M}), \mathcal{E}; l_r^q \right)} \right\}.$ 

Since  $L^{p,\infty}$  has Fatou norm, a standard argument shows that we can take the limit for  $m \rightarrow \infty$  to obtain the result.

#### References

- Astashkin, S.V. (2010). Rademacher functions in symmetric spaces. *J. Mathematical Science*, 169(6), 725-886.
- Astoshkin, S.V., & Maligranda, L. (2004). Interpolation between  $L_1$  and  $L_p$ , 1 .*Proc. Mer. Math. Soc.*, 132(10), 2929-2938.
- Bennett, C., & Sharpley, R. (1988). *Interpolation of operators*. Volume 129 of Pure and Applied Mathematics. Boston, MA: Academic Press Inc.
- Haagerup, U., Junge, M., & Xu, Q. (2010). A reduction method for non-commutative  $L_p$ -spaces and applications. *Trans. Amer. Math. Soc.*, 362(4), 2125-2165.
- Johnson, W.B., & Schechtman, G. (1988). Martingal inequalities in rearrangement invariant function spaces. *Israel J. Math.*, 64(3), 267-275.
- Junge, M. (2002). Doob's inequality for non-commutative martingales. *J. Reine Angew. Math.*, 549, 149-190.
- Junge, M., & Xu, Q. (2003). Non-commutative Burkholder/ Rosenthal inequalities. *Ann. Probob.*, *31*(2), 948-995.
- Junge, M., & Xu, Q. (2008). Non-commutative Burkholder/ Rosenthal inequalities. II: Applications. *Israel J. Math.*, 167(1), 227-282.
- Junge, M., & Zeng, Q. (2013). Non-commutative Bennet and Rosenthal inequalities. *Annals of Probability*, 41(6). 428-4316.
- Kalton, N., & Montgonetry-Smith, S. (2003). *Interpolation of Banach spaces* (Vol. 2, pp. 1131-1175). Amsterdam: North-Holland.
- Kreĭn, S.G., Petunin, Ju. I., & Semenov, E.M. (1982). *Interpolation of linear operators*. Volume 54 of Translations of Mathematical Mongraphs. Trans. from Russian by J. Szu'cs. American Mathematical Society, Providence, R.I.
- Lemardy, C., & Sukochev, F.A. (2008). Bademacher averge on non-commutative symmetric spaces. *J. Func. Anal.*, 255(1), 3329-3355.
- Lindenstrauss, J., & Tzafriri, L. (1979). Classical Banach spaces. 11, Volume 97 of Ergebniss der Mathematit and threr Grenzgebiete [results in Mathematics and Related Areas]. Berlin: Springer-Verlag. Function spaces.
- Lust-Piguard, F., & Pisier, G. (1991). Non-commutative Khintchine and Paley inequalities. *Aris. Mat.*, 29(2), 241-260.
- Montgmery-Smith, S. (n.d.). Personal communication.
- Pisier, G., & Xu, Q. (2003). Non-commutative  $L^p$  spaces. In: Handbook of the geometry of Banach spaces (Vol. 2, pp. 1459-1517). Amsterdam: North-Holland.
- Rosenthal, H. P. (1970). On the subspaces of  $L^p(p > 2)$  spanned by sequences of independent random variables. *Israel J. Math.*, 8, 273-303.
- Takesaki, M. (1972). Conditional expectation in von Neumann algebra. *J. Functional Analysis*, 9, 306-321.
- Takesaki, M. (1972). Conditional expectation in von Neumann algebras. *J. Functional Analysis*, 9, 306-321.
- Toed Dirksen, S., De Pagter, B., Potapov, D., & Sukchev, F. (n.d.). Rosenthal inequalities in non-commutative symmetric spaces. Vici Subsidy 639, 033, 604 of the Netherland Organization for scientific Research (NOW).
- Umegaki, H. (1954). Conditional expectation in an operator algebra. *Tôhoku Math. J.*, 2(6), 177-181.