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Abstract. Diabetes is a common disease worldwide which prevalence has been 

increasing and affecting millions of lives in the world. The recently released innovations on 

diabetes management have delivered promising outcomes and future perspectives of studies 

continue to bring hopes to patients with diabetes. This review discusses the major types of 

diabetes and their physiology. The different treatment options as well as future therapeutic 

perspectives are also highlighted. Research on diabetes control is continuous, and new 

treatment options are being daily studied in order to improve patients’ safety and quality of life 

even 100 years after the discovery of insulin. A deeper understanding of the physiology and 

pathophysiology associated with this multifactorial disease would ensure the development of 

safe, effective and long-lasting therapeutic options.  
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Introduction 

Diabetes is a disease that has become extremely common worldwide with an increased 

prevalence. It results in high levels of sugar in the blood over prolonged periods of time 

(American Diabetes Association, 2012; The Lancet, 2017). Usually, when levels of sugar 

increase in the body (especially after meals), insulin is released from the beta cells in the 

pancreas and stimulates the body cells to remove glucose from the blood allowing its 

absorption and metabolism into muscle, fat and liver (American Diabetes Association, 2012). 

In this review we will identify and describe the types of diabetes, differentiate and classify 

them, explore complications that may arise due to the development of diabetes, convey and 

communicate current treatments that may ease the symptoms and even cure diabetes. 

 

Types of Diabetes and the Micro and Macrovascular Complications 

 

Types of Diabetes 

Type 1 Diabetes Mellitus (T1DM) 

T1DM constitutes roughly 5-10% of all cases of diabetes in the world (Atkinson et al., 

2014; Daneman, 2006) and recent data show an increasing prevalence among youth ranging 

from 179,388 in 2010 to 587,488 in 2050 (Imperatore et al., 2012). It has a strong genetic 

component although other factors, such as exposure to viruses and other underlying health 

conditions can play a role in its development (Oram et al., 2016). The occurrence of T1DM has 

been associated to the activation of autoantibodies that attack the insulin-producing cells of the 

pancreas due to the presence of autoantibody antigens on their surface. Consequently, beta cells 

are destroyed leading to lower insulin secretion. Thus, people who have T1DM must constantly 

monitor their blood glucose levels through proper measuring tools and take insulin as part of 

                                                           
* Authors contributed equally to this work (Co-first authors) 

 

Corresponding author: Muriel T Zaatar, P.O. Box: 116458 Dubai, UAE. E-mail: muriel.zaatar@fty.uobd.ac.ae, Phone 

number: +971505841270 



 

 
 

 

                                                  European Modern Studies Journal                           journal-ems.com 

 

335 European Modern Studies Journal, 2022, 6(3) 

their treatment for all their life (McLaughlin et al., 2016; Regnell & Lernmark, 2017; Roep, 

2003; N. J. Thomas et al., 2018). 

Type 2 Diabetes Mellitus (T2DM) 

T2DM is characterized by a progressive decline in beta-cell function and insulin 

resistance (Butler et al., 2003; Chatterjee et al., 2017; Defronzo, 2009; Imperatore et al., 2012). 

It is the most common form of all diabetes types with an incidence rate of about 90% of all 

cases diagnosed worldwide (Imperatore et al., 2012), and it is estimated that the number of 

young people with T2DM will increase from 22.820 in 2010 to 84.131 in 2050 (Kwak & Park, 

2016). T2DM has a stronger link to genetics and family history than type 1 although lifestyle 

factors are critical for its development (Olokoba et al., 2012; Pearson, 2019; Pearson et al., 

2003; Stančáková & Laakso, 2016; Weyer et al., 1999). Scientists were able to identify 75 

common genetic locations/variants associated with T2DM in patients but the molecular 

mechanism through which those genetic variants contribute to the pathogenesis of the disease 

is still unknown (Weyer et al., 1999). Gene expression is influenced also by environmental 

factors through epigenetic changes. Indeed, deoxyribonucleic acid (DNA) methylation at 

cytosine and guanine separated by a phosphate (CpG) locus is a well-known epigenetic 

mechanism that results in lower gene expression by interacting with histone deacetylases or 

interfering with transcription-factor binding. Genome-wide DNA methylation analysis has 

shown T2DM -associated changes in DNA methylation that has the potential to be used as a 

promising T2DM biomarker and to develop therapeutic strategies for the disease (Weyer et al., 

1999).  

Other Types of Diabetes  
Gestational 

Gestational diabetes mellitus (GDM) is a temporary form of diabetes occurring during 

pregnancy due to insulin resistance and/or pancreatic dysfunction with a prevalence rate 

ranging between 9 to 25% of all pregnancies worldwide (Alejandro et al., 2020; Alfadhli, 2015; 

American Diabetes Association, 2013). During pregnancy the release of estrogen, progesterone 

and cortisol increases, influencing how the cells of the body respond to insulin and trigging 

fluctuations in the blood sugar levels. In particular, insulin resistance during pregnancy has 

been linked to molecules secreted by the placenta, such as tumor necrosis factor, placental 

lactogen, and human placental growth hormone (Coustan, 2013). In those women whose 

pancreas is unable to adjust to increased insulin demand hyperglycemia develops resulting in 

GDM. Then, diet and lifestyle changes are highly recommended together with blood glucose 

monitoring and pharmacotherapy including insulin injections for severe cases (HAPO Study 

Cooperative Research Group et al., 2008; Lende & Rijhsinghani, 2020). An early screening for 

GDM especially in women with risk factors is critical to avoid complications in pregnant 

women and their offspring (Lende & Rijhsinghani, 2020). Indeed, children of women with 

GDM have a high risk of developing diabetes or prediabetes at young age compared to 

offspring of women without diabetes making GDM a pathology responsible for the spread of 

diabetes in future generations (Damm, 2009; Nankervis et al., 2018).  

Genetic defects of beta cell or insulin function 

Genetic mutations affecting proteins responsible for regulation of insulin and beta cell 

functions cause diabetes (Christensen & Gannon, 2019; Donohue & Uchida, 1954; Gloyn, 

2003). For instance, glucokinase (GCK) is an enzyme that regulates the amount of insulin 

secreted by beta cells and around 200 mutations in this gene have been associated to different 

diabetes phenotypes. Any functional DNA mutations in the GCK gene can potentially result in 

lower (hypoglycemia) or higher levels of sugar (hyperglycemia) in the blood due to increased 

or decreased amount of insulin released (Horikawa et al., 1997). Indeed, specific heterozygous 

inactivating mutations in the GCK gene have been observed and cause mild diabetes in adults, 

called maturity onset diabetes of the young (MODY2), while homozygous mutations in the 
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gene result in permanent neonatal diabetes mellitus (PNDM). A mutation in the heterotropic 

allosteric activator site of the enzyme causes, instead, hypoglycemia (Horikawa et al., 1997). 

The hepatocyte nuclear factor 1α (HFN1α) is a transcription factor controlling gene expression 

during embryonic development and in adult tissues and it is expressed in pancreatic beta cells. 

Several loss of function mutations in this gene cause beta cell dysfunction and maturity onset 

diabetes (MODY3) (Kadowaki et al., 1991; Kristinsson et al., 2001; Lindner et al., 1999; Magré 

et al., 2001). Similarly, HFN4α is a transcription factor expressed in liver, gut and pancreas 

and regulates the expression of genes involved in the metabolism of glucose, fatty acids and 

amino acids. Mutations in various domains of the transcription factor result in defective 

function of HFN4α and lead to diabetes (MODY1) (Rubio-Cabezas et al., 2010; Stoffel & 

Duncan, 1997). Inactivating mutations in the insulin promoter factor 1 (IPF1), a pancreatic beta 

cell specific transcription factor, leads also to agenesis of the pancreas and diabetes (MODY4) 

(Stoffers et al., 1998). A form of maturity onset of diabetes has been associated to mutations 

also in neurogenic differentiation 1 (NEUROD1), a helix-loop-helix transcription factor that 

regulates the expression of insulin. In particular, two mutations in the DNA binding domain 

and trans-activation domain that inactivate the protein cause T2DM in humans together with 

neurological alterations, such as learning difficulties, sensorineural deafness, visual 

impairment, and other symptoms (Thomas et al., 2002). Another genetic disorder, called 

Berardinelli-Seip Syndrome, characterized by absence of adipose tissue and severe insulin 

resistance includes diabetes as complication. The syndrome is an extremely rare autosomal 

recessive disease and is caused by mutations in the gene Berardinelli-Seip congenital 

lipodystrophy 2 (BSCL2), an endoplasmic reticulum protein involved in preadipocyte 

differentiation and lipid droplet metabolism (Wang et al., 2000).  

Pancreas damage 

Diabetes can occur following pancreas damage and is, then, classified as type 3c diabetes 

or pancreatogenic diabetes. Type 3c diabetes can be a result of several diseases, such as chronic 

pancreatitis, pancreatic ductal adenocarcinoma, haemochromatosis, pancreatic surgery, and 

cystic fibrosis (Hart et al., 2016; Kim et al., 2011; Moran et al., 2010; Pannala et al., 2008; 

Slezak & Andersen, 2001). In all these cases, there is a reduction of beta cell mass with 

consequent reduction of insulin release. In order to maintain optimal insulin levels in the blood, 

the remaining beta cells try to release more insulin that results in cellular stress and ultimately 

in cellular dysfunction. At the end, less insulin is produced resulting in a hyperglycemia and 

diabetes.  

Hormonal-induced 

Diabetes can be caused also by excessive amounts of circulating hormones (ex. growth 

hormone, cortisol, glucagon, epinephrine, somatostatin) (Alexopoulou et al., 2014; Han et al., 

2016; Hansen et al., 1986; Khatiwada et al., 2020; Kim et al., 2005; Møller et al., 1992; 

Pivonello et al., 2008; Rooney et al., 1993; Song et al., 2018; Tomassetti et al., 2001). 

Glucagonoma is a very rare tumor of the pancreatic alpha cells that leads to large amount of 

glucagon in the blood. This hormone antagonizes the insulin action, converting the hepatic 

glycogen storage to glucose that is released into the bloodstream. Beta cells are, then, forced 

to produce constantly insulin to lower the blood glucose concentration which leads to their 

dysfunction in the long term. Around 51% of male and 64.5% of female patients with 

glucagonoma develop diabetes (Song et al., 2018). Acromegaly is another health condition that 

cause insulin resistance and altered glucose metabolism. Adenomectomy often restores glucose 

levels in patients with the tumor suggesting that high amount of growth hormone is a risk factor 

for diabetes (Møller et al., 1992). 

Drug-induced 

Diabetes can also be a result of the action of specific drugs. These drugs can alter glucose 

homeostasis leading to hyperglycemia or hypoglycemia. The antibiotic Gemifloxacin, beta-
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blockers, thiazide diuretics, corticosteroids, cyclosporine, tacrolimus, and protease inhibitors 

have been shown to raise blood glucose levels in patients with or without diabetes (Bangalore 

et al., 2007; Casula et al., 2017; Dehghani et al., 2020; Fathallah et al., 2015; Kowalchuk et al., 

2021; Latek et al., 2019; Mamakou et al., 2018; Rehman et al., 2011; Sattar et al., 2010; 

Ställberg et al., 2020). 3-17% of people treated with protease inhibitors develop hyperglycemia 

due to the development of a body stress response leading to a decreased sensitivity to insulin 

and, consequently, diabetes (Rehman et al., 2011). 1.5-2.5% of patients with inflammatory and 

obstructive pulmonary diseases treated with corticosteroids develop hyperglycemia due to a 

reduced action of insulin and increased gluconeogenesis by activation of Phosphoenolpyruvate 

carboxykinase (PCK) gene transcription. Pentamidine is an anti-fungal/protozoal drug and its 

use as therapeutic agent has been associated with beta cell destruction and diabetes (Rehman 

et al., 2011).  

Catamenial hyperglycemia 

Catamenial hyperglycemia is a disorder related to menstrual cycle resulting in increased 

blood glucose levels (Gomez et al., 2017; Jamshed et al., 2013; Letterie & Fredlund, 1994). 

Catamenial hyperglycemia can develop into diabetic ketoacidosis (DKA) which is usually a 

consequence of T1DM (Gomez et al., 2017; Letterie & Fredlund, 1994). Then, in absence of 

T1DM, menstrual cycle alterations should be considered as cause of possible DKA. Glucose 

monitoring together with insulin release systems can be used to treat catamenial hyperglycemia 

and prevent serious complications in women. 

 

Microvascular Complications 

Diabetic retinopathy 

 Diabetic retinopathy (DR) is a common consequence of diabetes that affects the blood 

vessels of the retina with 93 million of people worldwide suffering from the disease (Yau et 

al., 2012). It is usually diagnosed 5 years after the symptoms begin and, if not cured, it can lead 

to loss of vision (Lechner et al., 2017). DR results from the long-term effects of hyperglycemia 

on retinal capillaries promoting endothelial dysfunction, in particular microangiopathy and 

arterial stiffness. The disease has two main stages: non-proliferative diabetic retinopathy 

(NPDR) and proliferative diabetic retinopathy (PDR). NPDR is the early stage of DR and is 

characterized by increased vascular permeability with small areas of balloon-like vessels in the 

retina and breakdown of the blood-retinal barrier (BRB). PDR is the advanced stage during 

which new blood vessels are formed to compensate for the inability of the swollen capillaries 

to bring blood to all retinal cells. These new vessels are vulnerable and can break causing 

vitreous hemorrhage and retinal detachment, all contributing to vision loss (Lechner et al., 

2017; Moreno et al., 2013). DR is treated with diabetes management while advanced cases 

require laser therapy or surgery (Moreno et al., 2013).  

Diabetic neuropathy 

Diabetic neuropathy (DN) is one of the most dangerous complications of diabetes 

mellitus that can lead to death. Hyperglycemia can lead to neuronal damage altering several 

molecular pathways in neurons such as polyol and hexosamine pathways (Dewanjee et al., 

2018). In particular, peripheral neuropathy affects 30-50% of people with diabetes and is 

usually classified as multifocal neuropathy. Symptoms include pain and numbness in legs and 

arms due to damage of the autonomic small fibers. It is usually diagnosed through the thermal 

threshold testing that evaluates how sensitive a person is to temperature changes. Patients with 

DN have usually a reduced ability to feel those changes (Dewanjee et al., 2018; Feldman et al., 

2019; Malik, 2020). A valuable screening tool to identify patients with peripheral neuropathy 

is the neuropad test that measures the plantar sweat production. Abnormal results indicate 

sudomotor dysfunction possibly associated with peripheral neuropathy (Malik, 2020). Early 
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diagnosis of DN is useful to immediately start treatment and prevent damage of the large nerve 

fibers that can be deadly. 

Diabetic nephropathy 

Another common complication of type 1 and T2DM is diabetic nephropathy. It is 

characterized by the loss of kidney function, and it is one of the causes of chronic kidney 

disease (CKD) and end-stage renal disease (ESRD) (Papadopoulou-Marketou et al., 2017). 

Based on the extent of the glomerular, interstitial, and vascular lesions, diabetic nephropathy 

is characterized by four different stages. Diabetic nephropathy is mostly treated with 

antidiabetic medications. It is associated with an increased risk of death, in particular from 

cardiovascular disease.  

 

Macrovascular Complications 

Diabetes has several macrovascular complications (Viigimaa et al., 2020). 

Cardiovascular disease 

Diabetes has caused the death of 1.6 million people till now mostly due to associated 

cardiovascular diseases (Henning, 2018). Patients with diabetes and no myocardial infarction 

have a similar risk to develop acute coronary syndrome compared to nondiabetics that have 

had myocardial infarction. But the mortality rate for patients with diabetes after developing 

myocardial infarction is twice compared to the mortality rate of patients without diabetes (Htay 

et al., 2019). Risk factors for cardiovascular diseases in patients with diabetes are insulin 

resistance, hyperglycemia and excess free fatty acids that increase oxidative stress and disrupt 

protein kinase C (PKC) intracellular signaling which results in vascular swelling, constriction 

of blood vessels, thrombosis and atherogenesis (Htay et al., 2019). Interestingly, also 

hypoglycemia is associated with an increased risk of cardiovascular effects and mortality 

through several mechanisms. Patients with diabetes are subjected to hypoglycemic episodes 

and, consequently, they have a major risk to develop hypoglycemia induced cardiovascular 

effects (International Hypoglycaemia Study Group, 2019). 

Cerebrovascular disease 

Diabetes is an important risk factor for the development of cerebrovascular diseases and 

20% of people with diabetes die from stroke (Georgakis et al., 2021; Phipps et al., 2012). 

Hemoglobin A1c (HbA1c), fasting glucose levels, insulin resistance and beta cell function 

parameters have been evaluated to investigate their association with several types of 

cerebrovascular diseases. In particular, high HbA1c levels, as well as insulin resistance and 

beta cell dysfunction are associated with an increased risk of ischemic stroke of large arteries 

and small vessels. Increased levels of Hb1Ac are also correlated with carotid atherosclerotic 

plaque formation, fractional anisotropy and white matter and brain atrophy markers confirming 

the close link between diabetes and cerebrovascular disease development (van Sloten et al., 

2020). 

Peripheral artery disease 

 Peripheral artery disease (PAD) is characterized by a reduced blood flow to the 

extremities of the body and is often caused by atherosclerosis, plaque formation in the vessel 

walls, that reduce the blood flow through them (American Diabetes Association, 2003). Since 

diabetes causes vascular dysfunction leading to vascular inflammation and atherosclerotic 

plaque deposition in the arteries, PAD is more common in patients with diabetes compared to 

non-diabetics (Barnes et al., 2020). Patients with both PAD and diabetes, especially those 

considered at high risk for foot ulcer development, have also an increased risk of lower 

extremities amputation (Firnhaber & Powell, 2019). Individuals belonging to minority groups: 

Native American, African American and residents of rural areas have also shown a higher risk 

of lower extremities amputation compared with whites, suggesting that a difficult 

socioeconomic environment influences the availability of appropriate health care tools favoring 
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drastic and irreversible medical interventions, such as leg amputation (Mascarenhas et al., 

2014). 

 

Conventional Therapeutic Approaches for Diabetes Management 

Conventional therapies for diabetes can be split into four main categories: exercise and 

weight control, medical nutrient therapy, oral glucose drugs and insulin injections.  

 

Exercise and Weight Control 

Exercise has been shown to be beneficial in lowering glycemic blood levels in patients 

with diabetes (Ajala et al., 2013; Boulé et al., 2001). Different kinds of training, such as aerobic, 

resistance and combined, are effective in reducing HbA1c levels (Ajala et al., 2013; Boulé et 

al., 2001), suggesting that physical activity is as important as diet and medications in diabetes 

care. Diet is particularly important in weight control and a food approach with higher amount 

of proteins, lower amount of carbohydrates, lower glycemic index (similar to Mediterranean 

diet) reduces blood sugar levels in patients with diabetes at high risk of cardiovascular disease 

(Gregg et al., 2012). Such regime is more effective than all antidiabetic therapies in achieving 

non-diabetic fasting glucose levels in 50% of patients with long-duration T2DM (Lean et al., 

2019). Intensive weight loss intervention based on physical activity, diet and social support is 

associated with remission of diabetes (Snowling & Hopkins, 2006; Steven & Taylor, 2015), 

underlying the importance of weight management in diabetes treatment. 

 

Medical Nutritional Therapy 

Medical nutritional therapy (MNT) is a personalized medical guidance for patients with 

diabetes. It is provided by registered dietitian nutritionists (RDN) and offers support a 

nutritional guideline for each patient. The RDN develops a nutritional diagnosis, goal, and care 

plan to help the patient to manage or treat diabetes (Evert et al., 2019). Behavioral and lifestyle 

changes are supported by repeated follow-up visits that involve monitoring and evaluating 

progress, as well as any health or medication changes. The eating plan is tailored for each 

patient taking in account his/her cultural, religious, and dietary beliefs (Evert et al., 2019). 

MNT has demonstrated its effectiveness in improving HbA1c levels and body weight control 

in type 1 and type 2 patients with diabetes (Franz et al., 2017; Morris & Wylie-Rosett, 2010). 

This kind of therapy is focused not only on treating diabetes but also other medical conditions, 

such as cardiovascular diseases, cancer, and kidney disease (Morris & Wylie-Rosett, 2010). 

 

Oral Glucose Lowering Drugs 

Oral drugs used to treat diabetes belong mainly to the following classes: biguanides, 

sulfonylureas, meglitinides and thiazolidinediones (Alam et al., 2019; American Diabetes 

Association, 2020; Holman et al., 2008; Home et al., 2009; Joshi et al., 2015; Kajbaf & Lalau, 

2014; Leonard et al., 2018; van de Laar et al., 2005; Yin et al., 2014). Among those drugs, the 

thiazolidinedione, pioglitazone, has shown some medical concerns in several studies: it is 

effective in lowering fasting blood glucose and HbA1c levels but can cause edema and lead to 

body weight increase (Alam et al., 2019). Nevertheless, the drug is used by patients with 

diabetes, dyslipidemia and cardiovascular diseases. Sulfonylureas and metformin are 

associated with decreased risk of heart attack, diabetic complications, and death (Holman et 

al., 2008; Home et al., 2009; Kajbaf & Lalau, 2014; van de Laar et al., 2005; Yin et al., 2014). 

Although they have positive medical effects, sulfonylureas, such as glyburide, and metformin 

and have been linked to a higher risk of hypoglycemia compared to pioglitazone (Holman et 

al., 2008). 
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Insulin Injections 

Insulin injections are the primary treatment for patients with T1DM who fail to naturally 

produce the hormone (Swinnen et al., 2009). Insulin therapy is less used for patients with 

T2DM and only when meal plan, exercise, weight loss and antidiabetic oral drugs do not 

achieve the desired reduction of blood glucose concentration (Hirsch et al., 1990; Swinnen et 

al., 2009). Insulin therapy is does not started immediately but when HbA1c levels are above 

7% after at least 2 months of dual oral therapy. When this does occur, insulin administration is 

gradual and combined with other medications to ensure the best control of blood glucose levels. 

One insulin injection is usually not enough and multiple administrations per day are necessary 

to achieve and maintain HbA1c levels under 7% (Silver et al., 2018). Two possible side effects 

of insulin therapy include hypoglycemia and body weight gain. A successful insulin therapy 

requires that patients monitor their blood sugar levels at least four times a day and before every 

meal as well as control their food intake. If properly followed, this treatment reduces hypo and 

hyper glycemic episodes and can guarantee a long healthy life for patients with T1DM (Hirsch 

et al., 1990). 

 

Recent Trends in Therapeutic Approaches for Diabetes Management 

 

New Pharmacological Therapies 

Dipeptidyl peptidase-4 (DPP-4) inhibitors 

New pharmacological treatments for T2DM include drugs that inhibit the incretin 

hormone-regulator dipeptidyl peptidase-4 (DPP-4) and consequently lower the blood glucose 

levels (Ahrén et al., 2002; Aschner et al., 2006; Herman et al., 2006; Mu et al., 2006; Pratley 

et al., 2006; Raz et al., 2014; Rosenstock et al., 2019). The effects of the DPP-4 inhibitor, des-

fluoro-sitagliptin, on beta cell mass and function, have been evaluated in a mouse model of 

T2DM, the high-fat diet (HFD) streptozotocin (STZ)-induced diabetic mouse that has defects 

in insulin sensitivity and secretion. After 2–3 months of treatment with this DPP-4 inhibitor, 

HbA1c, triglycerides, and free fatty acids levels were significantly reduced, as well as 

postprandial and fasting hyperglycemia. Beta cell mass and beta cell-to-alfa cell ratio were 

increased, together with insulin content and glucose stimulated insulin levels (Herman et al., 

2006). The positive effects of DPP-4 inhibitors on glycemic control have been demonstrated 

also in patients with T2DM (Mu et al., 2006). 

Another DPP-4 inhibitor, vildagliptin, has been tested in patients with T2DM who had 

previously been on a diet. This drug, as monotherapy, has been able to improve the glycemic 

control, beta cell function and HbA1c blood levels in those subjects (Pratley et al., 2006). 

Glucagon-like peptide-1 (GLP-1) receptor agonists 

Glucagon-like peptide-1 (GLP-1) receptor agonists belong to a new class of drugs used 

for type 2 patients with diabetes (Blonde & Russell-Jones, 2009; Diamant et al., 2014; Fadini 

et al., 2013; Samson & Garber, 2013; Toft-Nielsen et al., 1999; Zander et al., 2002). The safety 

and efficacy of those drugs have been evaluated in several clinical trials in which HbA1c and 

fasting blood glucose levels together with beta cell function were considered in placebo and 

treated groups. GLP-1 receptor agonists are able to lower the fasting plasma glucose levels, 

together with the free fatty acids and HbA1c levels over the course of 6 week treatment (Toft-

Nielsen et al., 1999). 

When given intravenously, GLP-1 agonists have been able to increase insulin and c 

peptide levels, reduce fasting plasma glucose concentration, and both systolic and diastolic 

blood pressure values in type 2 patients with diabetes over the course of 48 hours. No changes 

in free fatty acids and triglycerides levels have been observed in this study, suggesting that 

those can be achieved with a long-term GLP-1 receptor agonist treatment instead of a short-

term administration (Zander et al., 2002). No side effects have been shown in those clinical 
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trials although more studies are needed to better evaluate the safety of those drugs (Toft-

Nielsen et al., 1999; Zander et al., 2002). 

Sodium-glucose cotransporter type 2 (SGLT2) inhibitors 

Inhibitors of sodium-glucose cotransporter 2 (SGLT2) are antidiabetic drugs as they 

favor glucose excretion via the urinary tract (Berhan & Barker, 2013; Bolinder et al., 2012, 

2014; Scheen, 2015; Stenlöf et al., 2014). SGLT2 inhibitors, either as monotherapy or in 

combination with other antidiabetic drugs, are effective in lowering HbA1c levels, body weight 

and blood pressure in patients with T2DM although their use is associated with genital and 

urinary tract infections (Berhan & Barker, 2013).  

A clinical trial has tested the long-term effects of dapaglifozin on blood glucose levels 

and body weight in patients with diabetes. The drug was able to improve the glycemic control, 

reduce weight and fat mass, and HbA1c levels without changes in bone turnover over the course 

of 102 weeks in patients with T2DM who experienced a poor glycemic control with metformin 

(Bolinder et al., 2014). 

Rapid-acting insulin analogs 

The development of insulin analogs has allowed to use therapeutic drugs that resemble 

more closely the physiological behaviour of human insulin. The pharmacokinetic and 

pharmacodynamic profiles of insulin analogs (lispro, aspart and glulisine) have been shown to 

be similar to human insulin but with faster onset and termination of action (Becker et al., 2005; 

Grunberger, 2014; Heinemann et al., 1996; Luijf et al., 2010; Mudaliar et al., 1999). Glargine 

and detemir, two basal insulin analogs, are reported to have a longer duration of action, less 

variability and greater predictability of effects, cause less hypoglycemia (particularly 

nocturnal) and are associated with less weight gain compared to other analogs (Grunberger, 

2014). Although more expensive, those analogs show less risk of hypoglycemic episodes 

compared to normal human insulin, giving additional therapeutic benefits to patients 

(Grunberger, 2014). 

The pharmacokinetics and pharmacodynamics of glulisine, lispro, and human insulin 

have been exhaustively evaluated in a study involving obese people. In this study, subcutaneous 

injections of each insulin (0.3 U.kg-1) were given to nondiabetic volunteers in predetermined 

sequences (mean Body Mass Index (BMI) > 34 kg.m-2). Glulisine and lispro were found to 

have faster onset of action together with higher fractional glucose infusion rates (GIR), both 

GIR-area under the curve (AUC) and maximal GIR values than conventional human insulin. 

They were able to stimulate also a faster glucose metabolism in individuals with less insulin 

resistance as measured by the Homeostatic Model Assessment of Insulin Resistance (HOMA) 

index. Glulisine and lispro showed time to 20% and 80% of total GIR-AUC shorter than 

conventional human insulin, suggesting that those analogs have rapid and shorter 

pharmacokinetic profiles. Altogether, those data support a more rapid action profile of insulin 

analogs compared to human insulin regardless of BMI in obese patients (Becker et al., 2005). 

 

Transplantation 

Islet’s Transplant 

Islet transplant procedure is another therapeutic option in the treatment of diabetes 

(Farney et al., 2016; Lehmann et al., 2005; Nanji & Shapiro, 2006; Rickels & Robertson, 2019; 

Shapiro et al., 2000, 2005, 2006; Warnock et al., 2005). Allogenic transplantation remains a 

riskier procedure to perform compared to autologous islet transplantation, due to the 

implantation of foreign cells (allogenic) that can stimulate an immune foreign body response 

leading to the destruction of the islets and failure of the procedure (Farney et al., 2016). 

Microencapsulation of the islets as attempt to prevent the immune system mediated reject of 

the implant has shown harmful effects on both the islets and the patients. Different kind of 

encapsulation have been implemented in transplantation procedures: macroencapsulation 
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requires that multiple islets are incorporated in 1 or several large capsules as opposed to 

microencapsulation requiring 1 or 2 islets are incorporated in 1 microcapsule (Nanji & Shapiro, 

2006; Warnock et al., 2005). As surface area expands at a lower rate than volume, diffusion of 

nutrients and oxygen are slower in the macrocapsules that have a higher surface area to volume 

ratio compared to microcapsules. Consequently, control of blood glucose concentration is 

different between macro and micro-capsules, with the latter favoring a faster exchange of 

insulin and glucose through the capsule wall and a steady glycemia management. For this 

reason, much attention has been paid towards microencapsulation as a better therapeutic option 

for patients with diabetes even if this has some challenges that have to be addressed, such as: 

internal oxygen and nutrients transfer limitation to encapsulated cells, reduction of total 

transplant volume, reduction of inflammatory response after transplant of encapsulated cells 

(Nanji & Shapiro, 2006; Warnock et al., 2005).  

Although autologous islet transplantation is more successful, the allogenic 

transplantation can be beneficial for patients with severe hypoglycemia and patients taking 

already immunosuppressive drugs to support transplantation of other organs, such as kidney 

(Shapiro et al., 2000). In this regard, a study has shown that 7 patients with T1DM receiving 

islet allotransplants and taking glucocorticoid-free immunosuppressants such as sirolimus, 

tacrolimus, and daclizumab, have been insulin-free soon after the transplantation. Only 1 

patient required islet cells from 3 different donors. Those results confirm the utility of allogenic 

islet transplantation for diabetes treatment (Shapiro et al., 2000). 

Usually, 1/3 of recipients of auto-islets develop insulin independence as opposed to 

almost half of patients receiving allo-islet transplants. Anyway, only a small percentage (8%) 

of patients with T1DM who had received pancreatic islet transplants do not need insulin 

therapy after 1 year from the surgery, suggesting islet transplantation does not have long-term 

effects on diabetes management yet (Shapiro et al., 2000). 

Pancreatic Transplantation 

The American Diabetes Association (ADA) recommends pancreatic transplantation for 

patients with diabetes who receive also a kidney transplantation in order to avoid continuous 

injections of insulin (“Pancreas Transplantation for Patients with Type 1 Diabetes: American 

Diabetes Association,” 2000). Double pancreas and kidney transplantation does not 

compromise patient survival and, in fact, improve the function of the transplanted kidney 

(Smail et al., 2012). In absence of kidney transplantation, ADA has also established eligibility 

requirements for only pancreas transplantation. For instance, if a patient has frequent, acute 

metabolic complications that require medical attention, he/she is eligible for a pancreatic 

transplant (“Pancreas Transplantation for Patients with Type 1 Diabetes: American Diabetes 

Association,” 2000; Pfeffer et al., 1996). In absence of scientific data showing better results 

with islet transplantation, pancreas transplant remains the elective choice in the treatment of 

severe forms of diabetes. However, transplantation of the pancreas can also have some 

complications. Indeed, a study in patients who had pancreas and kidney transplants has shown 

that 1/3 of those patients had impaired glucose tolerance due to a reduced insulin secretory 

response at basal state and after intravenous glucose and glucagon stimulation (Smail et al., 

2012). Thus, it is to be expected that some patients may suffer from impaired glucose tolerance 

post transplantation due to a number of factors such as rejection damage and ischemia (prior to 

transplantation). These factors have to be considered prior to performing the transplant and 

appropriate tests must be applied to ensure that complications are prevented in transplanted 

patients. Another clinical study has shown that post-transplant diabetes mellitus (PTDM) has 

developed in 17% of T1DM and in 45% of T2DM patients (Neidlinger et al., 2010). That is a 

significant percentage which indicates that there can be common risk factors amongst patients 

developing PTDM, such as high BMI (prior to transplant), high daily insulin doses (prior to 
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transplant) and acute rejection of the pancreas. Those risk factors can eventually lead to 

pancreatic malfunction and hyperglycemia (Dean et al., 2008; Neidlinger et al., 2010). 

Bone Marrow Transplantation 

Diabetes affects the differentiation of bone progenitor cells (Barman et al., 2019; Duan 

et al., 2019; Malerbi et al., 2017; Thakkar et al., 2015; Venkat et al., 2020; Voltarelli et al., 

2007). It is known that diabetes is associated with persistent inflammation and accumulation 

of macrophages that impair wound healing processes (Barman et al., 2019). Consequently, 

bone marrow transplantation can have some adverse effects and should be carefully considered 

in patients with diabetes. Of course, immunosuppressive drug treatment increases the success 

of the hematopoietic stem cell transplantation as therapy forT1DM , even if a long-term insulin 

independence is not guaranteed (Voltarelli et al., 2007). Transplantation of exosomes from 

bone marrow stromal cells to diabetic mice suffering a stroke has shown multiple positive 

effects, such as improvement of blood brain barrier by enhanced tight junction protein function, 

increased axon and myelin density associated with increased number of oligodendrocytes and 

their progenitor cells, decreased macrophage and inflammatory factors activation. 

Then, exosome transplantation increases neurorestoration and functional positive 

outcomes in mice suffering from strokes and can be a promising treatment option for patients 

suffering from diabetes cardiovascular complications. 

 

Future Perspectives 

 

Pharmacological Therapy for Weight and Glucose Control 

Peptide hormone combination therapies 

The adipocyte-secreted hormone, leptin is a protein encoded by the obese (ob) gene and 

has a wide range of functions in the body: it influences several hypothalamic-pituitary 

endocrine axes, that regulate the function of adrenal and gonadal glands, pancreatic islets, and 

thyroid. The hormone exerts pleiotropic effects also on angiogenesis, immune system, 

osteogenesis, and wound healing (Clemmensen et al., 2014; Grasso, 2011). Several clinical 

trials have shown that the recombinant human leptin has positive effects on energy balance and 

obesity related endocrinopathies when used to treat rare kinds of human obesity caused by 

specific ob gene mutations (Moon et al., 2012). 

Leptin has also potent anti-diabetic actions that are independent of its effects on body 

weight and food intake. In particular, it can reverse diabetes in animal models of both type 1 

and T2DM. In addition, long-term leptin-replacement therapy is well tolerated and dramatically 

improves glycemic control, insulin sensitivity, and triglycerides levels in patients with severe 

insulin resistance (Moon et al., 2012). Those results have stimulated the creation of new anti-

obesity and anti-diabetes treatments involving the development of leptin receptor antagonists, 

synthetic peptide analogs and mimetics (Moon et al., 2012). Those leptin analogs in 

combination with GLP-1 receptor agonists have shown positive effects on glucose and lipid 

metabolism in obese mice (Grasso, 2011). 

Incretins combination therapy 

A new peptide with agonist action at three peptide hormone receptors: GLP-1, glucose 

dependent insulinotropic polypeptide (GIP) and glucagon receptors has shown positive effects 

on body weight and diabetic complications prevention in rodent models of obesity (Finan et 

al., 2015). Dual co-agonists or best mono-agonists diabetic therapies are less effective in 

reducing body weight, improving glycemic control, or reversing steatosis in diabetes animal 

models compared to this triple co-agonist therapy. Genetic, pharmacological and selective 

chemical loss-of-function studies have validated the contribution of each of those molecules in 

metabolic changes in vivo. The metabolic efficacy of this kind of treatment is due to a 

synergistic combination of glucagon, GLP-1 and GIP that increases energy expenditure, 
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decreases caloric intake, and mitigates the diabetogenic effects of glucagon, respectively, 

improving glucose control (Finan et al., 2015). At the same time, researchers have developed 

a peptide that is a potent co-agonist of both receptors of the incretin hormones, GLP-1 and GIP. 

In comparison to other GLP-1 agonists, the antihyperglycemic and insulinotropic effects of this 

unimolecular dual incretin peptide are significantly improved not only in rodent and primate 

(cynomolgus monkeys) models of obesity and diabetes (diabetic (db/db) mice and Zucker 

diabetic fatty (ZDF) rats) but also in patients with diabetes. The dual incretin co-agonist is 

effective in reducing fat mass in obese rats, in contrast to selective GIP agonists that have little 

effect on weight loss. The site-specific lipidation (Polyethylene Glycol (PEG) ylation) of the 

protein leads to a prolonged duration of action and then, less dosing avoiding the adverse 

gastrointestinal symptoms caused by administration of high amount of selective GLP-1 

agonists. Anyway, further studies are needed to confirm the potent effects of dual incretins 

agonists in the management of T2DM (Finan et al., 2013). 

 

Gene Therapy 

Gene therapy is a new form of treatment that focuses on altering genes or cells of the 

patient to achieve the desired goal. Gene therapy can be ex vivo or in vivo. Ex vivo therapy is 

based on taking the patient cells out of the body, modifying them genetically, and returning 

them back in the patient. In vivo therapy focuses, instead, on modifying the patient cells without 

removing them from the body.  

Ex vivo therapy 

Some of the first studies performed in the ex vivo gene therapy field have explored the 

ability of cells different from beta cells to produce insulin with the goal to implant them in the 

human body as additional source of the hormone (Fodor et al., 2007; Halban et al., 2001; 

Kuroda et al., 2011; Zalzman et al., 2003). Those experiments have been performed in rat liver 

cells (hepatocytes). Those cells were isolated from the rodents and, after culture with the insulin 

promoter factor 1, they were able to produce and release insulin in response to glucose and 

sulfonylureas. When implanted in diabetic mice, those cells were able to reduce the non fasting 

glucose levels in diabetic mice (Fodor et al., 2007). 

Fetal human progenitor liver cells (FH) can also be induced to differentiate into insulin-

producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, a key 

transcription factor in pancreatic development and insulin expression in beta cells. Those FH 

cells were able to produce and release insulin in response to glucose and maintain euglycemia 

for prolonged periods in diabetic mice, suggesting that this approach can be a novel source of 

cells for transplantation into patients with T1DM (Zalzman et al., 2003). When used for ex vivo 

gene therapy, cells must be engineered properly in order to adapt to physiological changes 

occurring in the body such as aging, fluctuations in weight, and body response to exercise, 

respond to glucose in order to avoid episodes of hypoglycemia and hyperglycemia and not 

stimulate the immune response that can cause rejection from the human body (Halban et al., 

2001; Kuroda et al., 2011). 

In vivo therapy  

The liver is an organ of interest in the field of gene therapy as hepatocytes can be induced 

to differentiate in islet cells and used to replace faulty beta cells in the pancreas. For an in vivo 

gene therapy approach, adenoviruses have been used as vectors to carry the proinsulin gene in 

the liver of murine models ofT1DM . After the infection, those cells were able to secrete insulin 

under proper stimulation (Auricchio et al., 2002; Chan et al., 2003; Kojima et al., 2003; Morral 

et al., 2002). Those results have shown that hepatocytes can be used as an additional source of 

insulin after genetic manipulation even though they aren’t naturally built to produce the 

hormone. Besides insulin, the enzyme GCK has been also overexpressed in the liver to evaluate 

the effects on insulin release and glycemic control (Morral et al., 2002; O’Doherty et al., 1999). 
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Genetic manipulation of the enzyme in diabetic rats has been able to decrease blood glucose 

levels by 38% and increase insulin concentration in the blood by 67% but had also a drastic 

effect on fat metabolism, increasing free fatty acids levels by 310% and triglycerides by 190% 

(O’Doherty et al., 1999). Those data have shown that genetic manipulation of hepatic GCK is 

still far from being considered as a valid approach to treat diabetes. On the other hand, 

expression of pdx1 in hepatocytes of diabetic mice has been able to increase plasmatic insulin 

levels by 300%, suggesting that genetic manipulation of this transcription factor can be 

considered to elaborate new antidiabetic strategies (Ferber et al., 2000). 

 

Stem Cell Therapy  

Stem cell therapy is one of the newest and most advanced approaches for the treatment 

of major metabolic diseases such as diabetes (Hori, 2009; Maehr et al., 2009; Meier et al., 2006; 

Millman & Pagliuca, 2017; Pagliuca et al., 2014; Spaggiari et al., 2009; Stock et al., 2020; 

Voltarelli et al., 2007). Stem cells are fast replicating cells that have the ability to differentiate 

into any type of cell in the body such as neuronal, muscle or pancreatic cells. The effects of 

stem cell therapy have been evaluated when a nonmyeloablative hematopoietic stem cell 

transplantation (AHST) has been used to cure T1DM in patients taking immunosuppressive 

drugs (Voltarelli et al., 2007). Stem cells were injected into patients intravenously and over the 

course of months. After 6 months from the transplantation, C peptide levels were increased, 

indicative of more insulin being produced. On the other hand, anti-glutamic acid 

decarboxylases (GAD) plasmatic levels, that are usually high in type 1 patients with diabetes 

and are indicative of an immune mediated destruction of beta cells, were reduced. Blood 

glucose levels were also reduced and HbA1c concentration was less than the 7%, confirming 

an improved beta cell function in those patients who did not require intensive insulin therapy 

anymore (Voltarelli et al., 2007). Stem cell transplantation has been effective in enhancing beta 

cell function but is not recommended in patients with diabetic ketoacidosis. Although stem cell 

therapy has proven effective in reversing hyperglycemia, most patients require insulin 

treatment or conventional antidiabetic therapy after some months from the transplantation due 

to a decline of beta cell mass over the time for the activation of the immune system (Meier et 

al., 2006). The immune mediated loss of beta cells can be avoided if the stem cells implanted 

in the patient are not from donors but derived from the same patient. In this perspective, stem 

cell therapy is focusing more on reprogramming the fibroblasts of patients with diabetes in 

induced pluripotent stem cells (iPS) that are forced to differentiate in beta cells that are then 

reimplanted in high vascularized body tissues of the same patient (Maehr et al., 2009; Millman 

& Pagliuca, 2017; Pagliuca et al., 2014). This approach has the potential to tailor the 

antidiabetic therapy to each individual reducing the risk of immune mediated rejection of 

foreign cells.  

 

Smart Insulin-Delivery Technologies 

Closed-loop glucose responsive insulin (GRI) delivery systems 

Continuous glucose monitoring (CGM) (Hanna et al., 2020) together with a continuous 

subcutaneous insulin infusion pump (CSII), known as artificial pancreas or integrated closed-

loop control (CLC), has been found to improve glycemic levels in T1DM patients (Breton et 

al., 2012; Thabit & Hovorka, 2016). Several efforts have been made to ameliorate the CLC. A 

clinical trial has compared two modular CLC constructs: a standard control-to-range (sCTR) 

and an enhanced control-to-range (eCTR). Those two systems were used by patients recruited 

by the Universities of Virginia, Padova and Montpellier during 22-hours hospitalization. 

Besides to decreasing hypoglycemia by 2.7-fold, sCTR enhanced the time the patients spent in 

near normoglycemia from 61% to 74%. With the eCTR, it was possible to achieve a higher 

time in near normoglycemia (97%) and a higher time with tight glycemic control (77%), and 
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to reduce the overnight variability in mean blood glucose levels without increasing 

hypoglycemia (Breton et al., 2012). 

When comparing the pharmacokinetic properties of different insulin injections, such as 

Humalog (lispro) and ultra-rapid lispro (URLi), the latter has shown a faster onset of action, a 

reduced late exposure, and an overall shorter exposure length and a lower duration of action in 

patients with T1DM. Differently from Humalog, URLi had the same time-to-action profile in 

both old and young patients with T1DM and had also a major effect in reducing the postprandial 

glucose concentration, likely due to its ultra-rapid pharmacokinetic profile. Both Humalog and 

URLi are safe and well tolerated by patients with diabetes (Linnebjerg et al., 2020).  

The artificial pancreas (or CLC) brings enormous benefits in glucose control and, in 

general, diabetes management to type 1 patients with diabetes with unmet clinical needs. The 

CLC differs from conventional, threshold and predictive low glucose suspension of insulin 

technology by delivering automatic correction boluses of the hormone based on real time 

glucose sensor readings. Consequently, CLC offers a tighter control of glucose levels with 

reduced risk of hypoglycemia, that it is particularly important for patients with diabetes as they 

require insulin doses that fluctuate daily between one-third and three-fold. Without any doubt, 

the use of the CLC system, under appropriate supervision or remote monitoring, is effective in 

treating T1DM in children, adolescent, and adults. Further innovation will guarantee the wider 

adoption of this system in a clinical setting (Thabit & Hovorka, 2016). 

Polymer-based GRI systems 

GRI systems are insulin devices or insulin formulations that guarantee the delivery of the 

hormone based on the blood glucose levels of the patients (Norrild & Eggert, 1995; J. Wang et 

al., 2020; Yang et al., 2019). Boronic acids have been studied as sugar sensors for years. 

Nuclear Magnetic Resonance (NMR) spectroscopy studies have shown the formation of 

complexes between aromatic boronic acids and D-glucose under neutral nonaqueous and 

alkaline aqueous conditions. Those complexes contain the furanose form of the glucose 

attached to two boronic acid groups and the binding site position for the second boronic acid 

varies according to the conditions (neutral non aqueous or aqueous alkaline) of the chemical 

reaction. Then, the capacity of boronic acid derivatives to bind glucose forming cyclic boronate 

esters has been exploited to create non-invasive glucose sensor devices that are used in the 

fields of diabetes diagnostics and therapeutics (Norrild & Eggert, 1995). But the interaction 

between certain molecules and glucose is also important to create glucose-responsive strategies 

for insulin delivery. For example, since glucose binds its transporter on the surface of 

erythrocytes (red blood cells (RBCs)), a delivery system containing a glucose derivative 

(glucosamine)-modified insulin bound to RBC membrane has been developed. In 

hyperglycemic conditions, those erythrocyte-mimicking nanovehicles (EM-NVs) allow a fast 

release of insulin and, consequently, a reduction of blood glucose levels. As EM-NVs have 

better blood circulation and immune evasion properties, they have the potential to replace the 

current insulin delivery systems and represent, then, a promising tool in treatment strategies 

for diabetes. Besides diabetes, they can have a wide range of other biomedical applications 

ranging from drug carriers to photosensitizers to vaccine formulations (Yang et al., 2019). 

Insulin-lectin complexes 

Over the course of the past two decades, concanavalin A (ConA) has been the object of 

studies in the glucose monitoring field for its property to bind carbohydrates (Ballerstadt et al., 

2006). ConA-based affinity sensors can reliably measure glucose levels over lengthy periods 

of time and ConA-sugar modified insulin compounds can be used as delivery systems for the 

release of insulin in the body (Ballerstadt et al., 2006; Brownlee & Cerami, 1983). 

In vitro experiments have shown that oligosaccharides, such as mannotriose and 

maltotriose, have high binding affinity for insulin and those sugar-insulin compounds have the 

same biological activity of insulin, leading to the same glucose disappearance rate (t1/2) (3.0 
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min). The lectin ConA binds reversibly those glycosylated insulin molecules. In the absence of 

glucose, insulin is not released by the sugar-insulin/lectin complexes but when the 

concentration of glucose starts to increase in the surrounding environment, insulin begins to be 

released proportionally (Brownlee & Cerami, 1983). Despite the increasing interest in this 

lectin, some safety concerns about its toxic properties have been raised making its use in 

sensors or carrier systems for the human body limited (Ballerstadt et al., 2006; Brownlee & 

Cerami, 1983). 

Glucose-responsive polymers 

As insulin infusion is the central component of diabetes treatment, more and more efforts 

have been directed to ameliorate the drug delivery systems (DDS) in order to guarantee an 

accurate control of blood glucose levels through a consistent release of insulin (Anirudhan et 

al., 2016; Gu et al., 2013; Jin et al., 2009; Taylor et al., 2020; Yesilyurt et al., 2016). A graft 

copolymer of Oleic acid and β-cyclodextrin (OA-g ACD), coated with glucose oxidase (GOx) 

and catalase, has been described as potential glucose sensitive DDS (CAT). The swelling size 

of this nanoparticle was proportional to glucose concentration and after 240 minutes of 

exposure to glucose, the insulin release profile from the delivery system has shown a 

cumulative release of 78.0%, suggesting the copolymer is a good candidate to be used to 

administer the hormone intravenously (Anirudhan et al., 2016). A copolymer of methanol, 3-

acryl aminophenylboronic acid and maleimide-glucosamine used to form glucose-sensitive 

nanoparticles (NPs) has shown similar positive effects in controlling insulin release based on 

glucose concentration (Gu et al., 2013). 

Several injectable microgels have been studied to allow a better release of insulin in 

response to different concentrations of glucose. One of those systems is represented by 

monodisperse microgel (around 256 um) containing a pH-responsive chitosan matrix, enzyme 

nanocapsules, and recombinant human insulin. The nanocapsule protects the glucose-specific 

enzyme from denaturation processes and immune response when used in the host body. The 

microgels that is engineered to release insulin at basal rates under normoglycemia and at higher 

rates under hyperglycemia, has been effective in controlling the glycemic values more 

efficiently than other delivery systems in a mouse model of T1DM (Jin et al., 2009). 

Needle-free delivery of insulin is an attractive alternative to subcutaneous injections of 

the hormone conventionally used to treat diabetes. For this reason, gelatinous materials are 

tested for the oral and transdermal release of insulin. Gelatinous formulations, such as 

phenylboronic acid-modified polyethylene glycol macromonomers, are good candidates to be 

insulin carriers as they are often biocompatible and biodegradable, maintain solubility and can 

provide protection from gut enzymes, making their oral administration possible (Taylor et al., 

2020). Recent developments in the field of gel-based delivery systems are allowing also to 

address the closed loop control need to strictly maintain glycemic values within a narrow 

physiological range and avoid hypoglycemic episodes in patients with diabetes (Yesilyurt et 

al., 2016). 

Intrinsic GRI systems 

Insulin fusion proteins 

One example of insulin fusion protein is represented by the insulin glargine. It is a 

biosynthetic human insulin that has a glycine instead of asparagine in position 21 of the alpha 

chain and two additional arginine residues at the carboxyterminal extension of the beta chain 

of the insulin molecule. The presence of small quantity of zinc in the formulation prolong the 

absorption into the bloodstream through the subcutaneous tissue. Insulin glargine has a delayed 

beginning and longer duration of action, and a flatter time-action profile compared to neutral 

protamine hagedorn (NPH) insulin. In combination with short-acting insulin, it is more 

effective than multiple injections of NPH plus short acting insulin in improving glycemic 

control and reducing the risk of hypoglycemia, especially at night, in people with T1DM. As 
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monotherapy or in combination with oral hypoglycaemic medications, insulin glargine reduces 

HbA1c and fasting blood glucose levels in patients with insulin-dependent or non-insulin-

dependent T2DM (Gillies et al., 2000). After the development of insulin glargine, other insulin 

fusion proteins, that are responsive to glucose, have been evaluated. One of those hybrid protein 

is the insulin linked to the enzyme glucose oxidase via a disulfide molecule, 5,5'-dithiobis (2-

nitrobenzoic acid) that is able to release different amount of insulin according to the levels of 

glucose in the surrounding environment (Ito et al., 1994). 

Modified insulin derivatives 

The pharmacokinetic properties of insulin can be modified by chemical or genetic 

changes in its structure. Some of those chemical modifications, such as the incorporation of an 

aliphatic or phenylboronic acid moieties, are able to increase the long-lasting and glucose-

responsive characteristics of insulin, respectively. Those synthetic insulin derivatives allow a 

rapid reversal of blood glucose after glucose challenge in animal models of T2DM (Chou et 

al., 2015). The development of a GRI that responds to changes of blood glucose levels has been 

a long-standing objective. Hydrazone and thiazolidine based cleavable linkers are potential 

successful strategic tools to create GRI systems as they have almost no spontaneous hydrolysis 

that, on the other hand, increases with higher concentrations of glucose in the surrounding 

environment. Lipidated hydrazone and thiazolidines can be attached to the LysB29 side chain 

of insulin. In presence of glucose, those linkers hydrolyze, releasing active insulin from 

circulating deposits as demonstrated in vitro and clamp studies (Mannerstedt et al., 2021). 

Another GRI derivative is the phenylboronic acid (PBA)-insulin that contains a PBA attached 

to the LysB29 side chain of insulin as a diol binding element for carbohydrates. When glucose 

levels increase the PBA-insulin complexes dissociate releasing insulin from the bloodstream 

hormone deposits (Wu et al., 2013). 

The field of insulin derivatives is in continuous development as it has the potential to 

offer immediate benefits to the patients, such as a better control of blood glucose levels and a 

reduced number of insulin injections resulting in an improved quality of life. 

Glucose-regulated conformational changes 

The glucose-regulated conformational changes insulins are potential derivatives that pass 

from an inactive to an active state after glucose binds to them. Advances in synthesis 

methodology have allowed bioactivity studies on new insulin analogs with a fourth disulfide 

bond showing that structural changes of native insulin can be exploited to regulate its function 

(Brunel et al., 2019). 

X-ray crystallography and mutagenesis studies have suggested that the native state of 

insulin is inactive and, upon binding with its receptor, the hormone changes its conformation 

becoming activated. Experiments involving an A-chain analog of the insulin lacking the A6-

A11 disulfide bridge have shown that the N-terminal alpha-helix domain of the A-chain 

reorganizes upon receptor binding, regulating the activity of the hormone. In fact, the analog 

has low biological activity suggesting that structural alterations in this part of the hormone can 

be used to create insulin derivatives that changes activity upon binding with a ligand (Hua et 

al., 1996). 

To identify potential conformational switch sites for GRI design, DiMarchi et al. have 

analyzed 6 specific conformations of the receptor binding site of the insulin analog (des-

[B29,B30]-LysB28-) insulin deriving from the manipulation of the 4 disulfide bridges in the 

molecule. The A8–B10 or A14–B10 disulfide bridge altered the central B-chain α-helix and 

N-terminal A-chain α-helix blocking the conformational switch that makes insulin active after 

binding to its receptor. Displacement of those imposed bridges by glucose relieves the 

alteration in the molecule and restore the activity of the hormone. Further structural studies are 

needed to synthetize more advanced insulin analogs that will have a better impact on patients 

with diabetes’ health (Zaykov et al., 2014). 
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New Strategies in Diabetes Care 

Multidisciplinary approach and telemedicine 

Internet-based diabetes care has been under investigation cause of the potential to be a 

practical and cost-effective chronic illness self-management strategy (American Diabetes 

Association, 2021). A clinical trial lasted 12 months has assessed the positive effects of an 

Internet-based diabetes self-management program on diet, exercise, medication (primary 

outcomes), HbA1c, BMI, cholesterol, blood pressure values (secondary outcomes) in a court 

of patients with diabetes. Web-based interventions have been able to improve fat intake, eating 

habits and physical activity with small changes in the biological parameters of patients with 

diabetes, suggesting that this strategy integrated in the primary care can have a significant 

impact on public health thanks to its wide reach and easiness to assess (Glasgow et al., 2012). 

Telemedicine has been introduced as a method to allow all patients, especially those in 

rural locations, to have equal access to health care. In particular, the Clinical Video Telehealth 

(CVT) is a real-time, pharmacist led CVT program designed to improve chronic disease 

management that has been used to evaluate changes in health conditions of Veterans at the 

Tennessee Valley Healthcare System.  

Clinical pharmacy specialists (CPS) at the main facilities and community-based 

outpatient clinics (CBOC) were instructed to provide clinical pharmacy services to patients. 

One of the CPSs at the main hospital delivered services via telemedicine to the CBOCs where 

on-site clinical services were not available. CVT services by the CPS resulted in significant 

reduction of HbA1c values, and increased percentage of patients meeting the treatment goal 

for HbA1c levels established by ADA. The overall patient satisfaction scores were also high 

suggesting that CVT program is successful in improving health conditions of patients with 

diabetes (Maxwell et al., 2016). 

 

Conclusion 

In 2021, we celebrated the 100th birthday of insulin, whose discovery has changed the 

lives of millions of patients with diabetes. The advancement of new strategies to tackle diabetes 

has delivered optimistic outcomes and liberated the patients from their daily struggles 

associated with this disease. We are herein highlighting the most important aspects related to 

diabetes, such as the major types of the disease and their physiology. In addition, we are 

shedding lights on the different types of therapeutic approaches used as treatments for diabetes 

and the future therapeutic perspectives. Thus, a better understanding of the physiology and 

pathophysiology associated with diabetes mellitus would ensure the development of safe, 

effective and long-lasting therapeutic options.  
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Barrier (BRB), Diabetic Neuropathy (DN), Chronic Kidney Disease (CKD), End-Stage Renal 
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Disease (ESRD), Protein Kinase C (PKC), Hemoglobin A1c (HbA1c), Peripheral Artery 

Disease (PAD), Medical Nutritional Therapy (MNT), Registered Dietitian Nutritionists 

(RDN), Dipeptidyl Peptidase-4 (DPP-4), High-Fat Diet (HFD), Streptozotocin (STZ), 

Glucagon-Like Peptide-1 (GLP-1), Sodium-Glucose Cotransporter 2 (SGLT2), Body Mass 

Index (BMI), Glucose Infusion Rates (GIR), Area Under the Curve (AUC), American Diabetes 

Association (ADA), Post-Transplant Diabetes Mellitus (PTDM), Obese (ob), Glucose 

Dependent Insulinotropic Polypeptide (GIP), Diabetic (db/db), Zucker Diabetic Fatty (ZDF), 

Polyethylene Glycol (PEG), Fetal Human progenitor liver cells (FH), Pancreatic Duodenal 

Homeobox 1 (Pdx1), Hematopoietic Stem cell Transplantation (AHST), Glutamic Acid 

Decarboxylases (GAD), Induced Pluripotent Stem Cells (iPS), Glucose Responsive Insulin 

(GRI), Continuous Glucose Monitoring (CGM), Continuous Subcutaneous Insulin Infusion 

(CSII), Closed-Loop Control (CLC), Standard Control-To-Range (sCTR), Enhanced Control-

To-Range (eCTR), Ultra Rapid Lispro (URLi), Nuclear Magnetic Resonance (NMR), Red 

Blood Cells (RBCs), Erythrocyte-Mimicking Nanovehicles (EM-NVs), Concanavalin A 

(ConA), Drug Delivery Systems (DDS), Oleic acid and β-cyclodextrin (OA-g ACD), Glucose 

Oxidase (GOx), Catalase (CAT), Nanoparticles (NPs), Neutral Protamine Hagedorn (NPH), 

Phenylboronic Acid (PBA), Clinical Video Telehealth (CVT), Clinical pharmacy specialists 

(CPS), Community-Based Outpatient Clinics (CBOC) 
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